This homework is due on Monday, April 20.

- **1.** Let $h: \mathbb{R}^3 \to \mathbb{R}^3$ be the homomorphism $h \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x y \\ y z \\ z x \end{pmatrix}$.
 - a) Find the kernel of h and show that it has dimension 1.
 - **b)** Since the nullity of h is 1, there are bases B and D of \mathbb{R}^3 such that $Rep_{B,D}(h) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Find bases B and D with this property. (Recall that B will include a basis

of the kernel of h. There are infinitely many correct answers to this question!)

- c) Find the matrix $Rep_{B,D}(h)$ if $B = \left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\rangle$ and D is the standard basis.
- **d)** Find the matrix $Rep_{B,D}(h)$ if $B = \left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\rangle$ and $D = \left\langle \begin{pmatrix} -1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\-2 \end{pmatrix} \right\rangle$. (Part d is harder and messier.)
- 2. Find the determinants of the following matrices. Most of them are very easy, using properties of determinants! When you use a property of determinants in your computation, state the property.
 - a) $\begin{vmatrix} 3 & -1 \\ 2 & 5 \end{vmatrix}$ b) $\begin{vmatrix} 2 & 3 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{vmatrix}$ c) $\begin{vmatrix} 3 & -1 & 1 \\ -3 & -1 & 0 \\ 6 & -4 & 7 \end{vmatrix}$
 - d) $\begin{vmatrix} 0 & 0 & 2 \\ 0 & 5 & 3 \\ 6 & -2 & 4 \end{vmatrix}$ e) $\begin{vmatrix} 1 & 3 & 7 & 5 \\ 2 & 3 & 8 & 1 \\ 1 & 3 & 7 & 5 \\ 1 & 2 & 3 & 4 \end{vmatrix}$ f) $\begin{vmatrix} 1 & 2 & 3 \\ -2 & 3 & 5 \\ -1 & 5 & 2 \end{vmatrix}$
- 3. For a finite-dimensional vector space V, and a linear transformation $h: V \to V$, let's consider the question, does it make sense to try to define a determinant for h? To do so, we need a matrix representation for h, which means choosing a basis for V. If B is the basis, we get the matrix $Rep_{B,B}(h)$, and we can take the determinant of that matrix. But if we choose a different basis D, we get a different matrix $Rep_{D,D}(h)$. Do these two matrix representations always have the same determinant? To make this question very easy, just recall that

$$Rep_{D,D}(h) = Rep_{B,D}(id)^{-1} \cdot Rep_{B,B}(h) \cdot Rep_{B,D}(id)$$

4. The cross product of two vectors $\vec{v}, \vec{w} \in \mathbb{R}^3$ is a vector, $\vec{v} \times \vec{w}$, that is orthogonal to both \vec{v} and \vec{w} . The cross product of $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ can be remembered as the formal determinant

 $\begin{pmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$. Write out this determinant, using the formula for the determinant of a 3×3

matrix, and show that the result is, in fact, orthogonal to both vectors. (Recall that two vectors are orthogonal if their dot product is zero.)

- **5.** Let A be an $n \times n$ matrix. Suppose \vec{v} is a non-zero vector in \mathbb{R}^n and $\lambda \in \mathbb{R}$. If \vec{v} and λ the property that $A\vec{v} = \lambda \cdot \vec{v}$, then λ is called an **eigenvalue** of A, and \vec{v} is an **eigenvector** or A (with eigenvalue λ).
 - a) Show if λ is an eigenvalue of A, then the matrix $A \lambda I_n$ is singular, and the eigenvectors with eigenvalue λ are just the non-zero vectors \vec{v} such that $(A - \lambda I_n)\vec{v} = 0$.
 - b) Show that if the matrix $A \lambda I_n$ is singular, then λ is an eigenvalue of A.
 - c) Deduce that a real number λ is an eigenvalue of A if and only if $det(A \lambda I_n) = 0$.
 - d) If x is a variable and A is an $n \times n$ matrix, then $p(x) = det(A xI_n)$ is a polynomial in x. The eigenvalues of A are just the solutions of p(x) = 0. Use this fact to find the

eigenvalues of $A = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 3 & -1 \\ 0 & 0 & -1 \end{pmatrix}$, and then find an eigenvector for each eigenvalue. Note that $|A - xI_n| = \begin{vmatrix} 2 - x & 0 & 1 \\ -1 & 3 - x & -1 \\ 0 & 0 & -1 - x \end{vmatrix}$, and this detininant is very easy to compute using

the formula for the determinant of a 3×3 matrix.