
Metric Spaces

Math 331, Handout #1

We have looked at the “metric properties” of R: the distance between two real numbers x and
y is defined to be |x− y|. We can generalize this idea to define “metric spaces.” A metric space is
a set together with a notion of distance between any two elements of that set. The properties that
must be satisfied by distance in a metric space are modeled on the properties of distance in R.

Definition 1. A metric space is a pair (M,d) where M is a set and d is a function d : M×M → R
satisfying

1. d(x, y) ≥ 0, for all x, y ∈M , and d(x, y) = 0 if and only if x = y;

2. symmetry: d(x, y) = d(y, x), for all x, y ∈M ; and

3. the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈M .

A function d satisfying the above properties is said to be a metric on M.

In R, we have the idea of an open set. A subset of R is open in R if it is a union of open
intervals. Another way to define an open set is in terms of distance. A set is open in R if whenever it
contains a number a, it also contains all numbers “sufficiently close” to a. More precisely, A subset
A of R is open in R if for every a ∈ A, there is an ε > 0 such that the open interval (a − ε, a + ε)
is a subset of A. The open interval (a− ε, a+ ε) consists of all numbers that are within distance ε
of a.

In a general metric space, the analog of the interval (a − ε, a + ε) is the “open ball of radius ε
about a,” and we can define a set to be open in a metric space if whenever it includes a point a, it
also includes an entire open ball of radius epsilon about a.

Definition 2. Let (M,d) be a metric space. For a ∈M and ε > 0, we define the open ball about
a of radius ε to be the set Bε(a) = {x ∈ M | d(x, a) < ε}. A subset X of M is said to be open
in M if and only if for every a ∈ X, there is an ε > 0 such that Bε(a) ⊆ X.

To make it clear what metric is being used, the open ball Bε(a) can also be written Bd
ε (a) when

the metric space is not clear from context.
To justify the name “open ball,” we should check that an open ball is in fact an open set

according to the above definition. This fact can be proved using the triangle inequality:

Theorem 1. Let (M,d) be a metric space. Let a ∈M and ε > 0. Then the open ball Bε(a) is an
open set.

Proof. Let b be any point in Bε(a). To show Bε(a) is open, we must show that there exists δ > 0
such that Bδ(b) ⊆ Bε(a). Let δ = 1

2

(
ε − d(b, a)

)
. Since b ∈ Bε(a), we know by definition that
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d(b, a) < ε, so that δ > 0. To show Bδ(b) ⊆ Bε(a), let c ∈ Bδ(b). By definition, this means that
d(c, b) < δ. By the triangle inequality, we then have

d(c, a) < d(c, b) + d(b, a)

< δ + d(b, a)

= 1
2

(
ε− d(b, a)

)
+ d(b, a)

= 1
2ε−

1
2d(b, a) + d(b, a)

= 1
2ε+ 1

2d(b, a)

< 1
2ε+ 1

2ε, since d(b, a) < ε

= ε

This shows that c ∈ Bε(a), and since c is any point in Bδ(b), we have shown that Bδ(b) ⊆ Bε(a).

A major example of metric space is (Rn, d), where d is the usual distance measure on Rn, which
is given by

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

√√√√ n∑
i=1

(xi − yi)2

Note that for n = 1, this metric reduces to d(x, y) = |x− y|. In (Rn, d), the open ball Bε(~x) is the
n-dimensional sphere of radius ε centered at ~x.

∗ ∗ ∗

The open sets in a metric space (M,d) define a “topology” on M and make M into a “topological
space.” We will not cover topological spaces here, but the following theorem says that the collection
of open sets in a metric space satisfy the axioms for a topology. The proof is left as an exercise.

Theorem 2. Let (M,d) be a metric space. Then the open sets in M satisfy the following properties:

1. M is open and ∅ is open;

2. the union of any collection (finite or infinite) of open sets is open; and

3. the intersection of any finite collection of open sets is open.

∗ ∗ ∗

We can also define closed sets in a metric space. A subset C of a metric space (M,d) is said
to be closed if and only if its complement, M = M rC, is open. Note that a set can be both open
and closed; for example, the empty set is both open and closed. By applying DeMorgan’s laws to
the previous theorem, we immediately get a similar theorem for closed sets:

Theorem 3. Let (M,d) be a metric space. Then the closed sets in M satisfy the following
properties:

1. M is closed and ∅ is closed;

2. the intersection of any collection (finite or infinite) of closed sets is closed; and

3. the union of any finite collection of closed sets is closed.
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We can give an alternative definition of closed set using the idea of “accumulation point” (or
“cluster point” or “limit point”). An accumulation point of a set is a point that is arbitrarily close
to elements of that set.

Definition 3. Let (M,d) be a metric space, let X ⊆M , and let x ∈ X. Then x is a accumulation
point of X if and only if for every ε > 0, X ∩ (Bε(x) r {x}) 6= ∅. (That is, for any ε > 0, there is
at least one element of X, other than x itself, that is within distance ε of x.)

Note that an accumulation point of X might or might not be an element of X. For example,
consider the metric space (R, d), where d is the usual metric. The accumulation points of the open
interval X = (0, 1) are all points in the closed interval [0, 1]. In this example, every point of X is
an accumulation point, and there are two additional accumulation points of X, zero and one, that
are not elements of X. The only accumulation point of the set Y = { 1n |n ∈ N} is the number
zero, so in this case, no accumulation point of Y is an element of Y . For any closed set X, every
accumulation point of X is an element of X. In fact, this property characterizes closed sets.

Theorem 4. Let (M,d) be a metric space, and let X ⊆ M . X is closed if and only if every
accumulation point of X is an element of X.

Proof. Suppose first that X is closed. Let x be an accumulation point of X. We need to show that
x ∈ X. Suppose, for that sake of contradiction, that x 6∈ X. Then x is in the complement, M rX.
Since X is closed, we know by definition of closed that M rX is open. Since M rX is open and
x ∈M rX, we know by definition of open that there is an ε > 0 such that Bε(x) ⊆M rX. Since
Bε(x) is entirely contained in the complement of X, the intersection X ∩ Bε(x) = ∅. But this
contradicts the fact that x is an accumulation point of X. This contradiction shows that x 6∈ X is
impossible, and so we must have x ∈ X.

Conversely, suppose that every accumulation point of X is an element of X. We need to show
that X is closed. That is, we must show that the complement, M rX, is open. Let a ∈ M rX.
By definition of open, we need to find an ε > 0 such that Bε(a) ⊆M rX. Since a 6∈ X and every
accumulation point of X is in X, it follows that a is not an accumulation point of X. By definition
of accumulation point, this means that there is an ε > 0 such that X ∩ (Bε(a) r {a}) = ∅. Since
we also know a 6∈ X, we have in fact X ∩Bε(a) = ∅, which is equivalent to Bε(a) ⊆M rX.

Definition 4. Let (M,d) be a metric space, and let X be a subset of M . We define X, the closure
of X, to be the set consisting of all the points of X together with all the accumulation points of X.

Theorem 5. Let (M,d) be a metric space, and let X be a subset of M . Then X is closed.

Proof. By the previous theorem, it suffices to show that X contains all of its accumulation points.
So, suppose that x is an accumulation point of X. We need to show x ∈ X, that is, we need to
show that either x ∈ X or or x is an accumulation point of X. In fact, we show that x is an
accumulation point of X.

Let ε > 0. We need to show that X ∩ (Bε(x) r {x}) 6= ∅. Since x is an accumulation point
of X, we know that X ∩ (Bε/2 r {x}) 6= ∅. Let y ∈ X ∩ (Bε/2 r {x}). Since y ∈ X, either
y ∈ X or y is an accumulation point of X. If y is in X, then y is in X ∩ (Bε(x) r {x}) and
we are done. Suppose y is an accumulation point of X. Let δ = d(x, y), which is greater than
zero and less than ε

2 . We then have X ∩ (Bδ(y) r {y}) 6= ∅. Let z ∈ X ∩ (Bδ(y) r {y}). Then
d(z, x) ≤ d(z, y) + d(y, x) < δ+ d(y, x) < ε

2 + ε
2 = ε. That is, z ∈ Bε(x). Furthermore, z 6= x (since

d(z, y) < d(x, y)), and z ∈ X. That is, z ∈ X ∩ (Bε(x) r {x}), so that we are done in this case as
well.
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Note that if C is a closed subset of a metric space, then the fact that C already contains all of
its accumulation points means that C = C. And if X is any subset of a metric space, the fact that

X is closed means that X = X.

Exercises

Exercise 1. Let X be any set, and define ρ : X ×X → R by ρ(a, b) =

{
0 if a = b

1 if a 6= b
. Show that ρ

is a metric for X. What are the open sets and the closed sets in the metric space (X, ρ)? (Hint:
What is B1/2(x)?) The metric ρ is called the discrete metric on X.

Exercise 2. Prove Theorem 2.

Exercise 3. Find an infinite collection of open subsets of (R, d) whose intersection is not open.
Find an infinite collection of closed subsets of (R, d) whose union is not closed.

Exercise 4. Consider the set C([a, b]), the set of continuous functions on the closed, bounded
interval [a, b]. Define a metric d on this set by

d(f, g) =

∫ b

a
|f(x)− g(x)| dx

Show that d is in fact a metric. For a given f ∈ C([a, b]) and ε > 0, try to describe what it means
for a function g to be in Bd

ε (f). (Draw some pictures!)

Exercise 5. Consider the metric space R (with its usual metric). Show that 0 is an accumulation
point of the set X = { 1n |n ∈ N}, and that it is the only accumulation point.

Exercise 6. Suppose X is a subset of a metric space (M,d) and that x is an accumulation point of
X. Let ε > 0. We know that X ∩ (Bε(x)r {x}) non-empty. Show that in fact, X ∩ (Bε(x)r {x}) is
infinite. (Hint: Suppose that it is finite and show how to find another element of X ∩ (Bε(x)r{x})
that is closer to x than any of those finitely many points.)

Exercise 7. Show that any finite subset of a metric space is a closed subset of that metric space.

Exercise 8. Draw a picture, using R2 with its usual metric, to illustrate the proof of Theorem 1.
Explain!

Exercise 9. Suppose that A is a closed, bounded subset of R, and let λ = lub(A). Show that
λ ∈ A. (Similarly, A contains its greatest lower bound.)
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