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We have proved the Heine-Borel Theorem for closed bounded intervals in R: If [a, b] is a closed
bounded interval, then every open cover of [a, b] has a finite subcover. This property can be
extended to certain other subsets of R and to certain subsets of metric spaces in general. The
sets in question are said to be “compact.” We can take the finite subcover property to be the
definition of compactness, although we will see that there are other equivalent properties that also
characterize compactness. Note that compactness can be defined entirely in terms of open sets,
without mentioning the distance measure. This means that compactness is really a topological
property rather than a metric property.

Definition 1. Let (M,d) be a metric space. A subset, K, of M is said to be compact if and only
if every open cover of K (by open sets in M) has a finite subcover. If M itself has this property,
then we say that M is a compact metric space.

We start with the fact that in any metric space, a compact subset is closed and bounded.
Bounded here means that the subset “does not extend to infinity,” that is, that it is contained in
some open ball around some point. But we can give an alternative definition, which says that a set
is bounded if there is a limit on how far apart two points in the set can be. We can also define the
“diameter” of such a subset:

Definition 2. Let (M,d) be a metric space. A subset X of M is said to be bounded if and only if
the set {d(x, y) |x, y ∈ X} is bounded above. For a non-empty bounded set X, we define diam(X),
the diameter of X, to be the least upper bound of the set {d(x, y) |x, y ∈ X} (which exists by the
least upper bound property of R, since the set is bounded above).

Take careful note of how the finite subcover property is used in the following proof; the technique
is common in proofs about compactness.

Theorem 1. Let (M,d) be a metric space, and let K be a compact subset of M . Then K is a
closed subset of M , and K is bounded.

Proof. Let K be a compact subset of a metric space (M,d). To prove that K is closed, we show that
the complement, G = MrK, is open. Let z ∈ G. We need to find ε > 0 such that Bε(z) ⊆ G. Now,
for any x ∈ K, let εx = d(x, z). Since z 6∈ K, εx > 0. The collection of open sets {Bεx(x) |x ∈ K}
is an open cover of K (since any x ∈ K is covered by Bεx(x)). Since K is compact, there is a finite
subcover of this cover; that is, there is a finite set x1, x2, . . . , xn such that the corresponding open
balls already cover K. Let ε = 1

2 min(εx1 , εx2 , . . . , εxn). The claim is that Bε(z) ⊆ G. To show this,
let y ∈ Bε(z). We want to show y ∈ G, that is, y 6∈ K. Consider xi, where 1 ≤ i ≤ n. By the
triangle inequality, d(xi, y) + d(y, z) ≥ d(xi, z) = εxi ≥ 2ε. So, d(xi, y) ≥ 2ε− d(y, z) > 2ε− ε = ε.
(The last inequality follows because d(y, z) < ε.) Then, since d(xi, y) > ε, y is not in the open ball
of radius εxi about xi. Since the open balls Bεxi (xi) cover K, we have that y 6∈ K.
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To prove that K is bounded, let x be some element of K, and consider the collection of
open balls of integral radius, {Bi(x) | i = 1, 2, . . . }. Since every element of K has some fi-
nite distance from x, this collection is an open cover of K, Since K is compact, it has a fi-
nite subcover {Bi1(x), Bi2(x), . . . , Bin(x)}, where we can assume i1 < i2 < · · · < in. But since
Bi1(x) ⊆ Bi2(x) ⊆ · · · ⊆ Bin(x), this means that Bin by itself already covers K. Then, for
y, z ∈ K, y and z are in Bxn(x), and d(y, z) ≤ d(y, x) + d(x, z) ≤ in + in. It follows that 2in is an
upper bound for {d(y, z) | y, z ∈ K}. So, K is bounded.

It is not true in general that every closed, bounded set is compact. However, that is true in
Rn, with the usual metric, and this fact gives a complete characterization of compact subsets of
Rn. We will not prove this at this time, but Exercise 5 proves it for the case n = 1.

The Bolzano-Weirstrass Theorem for closed, bounded intervals in R says that any infinite subset
of such an interval has an accumulation point in the interval. A similar result holds for a compact
subset of a metric space.

Theorem 2. Let (M,d) be a metric space and let K be a compact subset of M . Then any infinite
subset of K has an accumulation point in K.

Proof. We prove the contrapositive. Let X ⊆ K. Assume that X has no accumulation point in K.
We must show that X is finite. Let z ∈ K. Since z is not an accumulation point, there is an εz > 0
such that X ∩ (Bεz(z)r{z}) = ∅. Thus, X ∩Bεz(z) either is empty or is {z}. The set of open balls
{Bεz(z) | z ∈ K} is an open cover of K. Since K is compact, there is a finite cover. That is, there
are finitely many points z1, z2, . . . , zn such that the corresponding open balls already cover K. But
each of the n open balls in that subcover contains at most one point of X, and it follows that X
has n or fewer points. So we have proved that X is finite.

In fact, a set being compact is actually equivalent to the property that every infinite subset of
that set has an accumulation point in the set. We have proved one direction of this equivalence.
We will not prove the other direction at this time.

Exercises

Exercise 1. Find an example of a closed and bounded set C in some metric space such that C is
not compact. (Hint: Consider the metric space (X, ρ) from exercise 1 in the first handout.)

Exercise 2. A subset X of a metric space is said to be totally bounded if for every ε > 0, X can
be covered by a finite collection of open balls of radius ε. Show that every compact set is totally
bounded.

Exercise 3. Let (M,d) be a metric space, let X be a non-empty subset of M , and let z be an
element of M . Define d(z,X) = glb{d(x, z) |x ∈ X}. Note that if z ∈ X, then d(z,X) = 0. Find
an example where z 6∈ X but d(z,X) = 0. Now suppose that K is a compact subset of M . Show
that d(z,K) = 0 if and only if z ∈ K.

Exercise 4. Let (M,d) be a metric space. Let K be a compact subset of M , and let C be a closed
subset of M . Then K ∩ C is compact. (Hint: The set M r C is an open set.)

Exercise 5. Show that any bounded, closed subset of R is compact. (Hint: Use the previous
exercise and the fact that any bounded, closed interval is compact.)

Exercise 6. Let (M,d) be a metric space, and let X be a subset of M . Show that X is bounded
(in the sense that it has a finite diameter) if and only if for any z ∈M , there is a number N such
that X ⊆ BN (z).
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