
Math 331, Fall 2019 Information About the Final Exam

The exam will be given in our regular classroom at the officially designated time, 8:30 AM on
Sunday, December 15. There will be some emphasis on material covered since the second in-class
test, but you are responsible for all of the material covered in the textbook, that is, Chapters 1
through 4. You are not responsible for any of the material on metric spaces. You might want to
review the study guides from the tests and my sample solutions to homework exercises, all of which
are available on the course web page. The exam will be about 6 pages long and should not take
the entire three hour exam period. However, you can use the three hours if you need them.s

Here is a list of some major topics from Chapters 1 through 3:

definition of the real numbers as Dedekind cuts of the rational numbers.

upper and lower bounds; least upper bounds and greatest lower bounds.

Least Upper Bound Property of the real numbers.

Archimedian Property of the real numbers.

open cover of a set of real numbers.

subcover of an open cover.

the Heine-Borel Theorem.

accumulation point of a set (also known as cluster point).

Bolzano-Weierstrass Theorem.

lim
n→a

f(x) and lim
n→∞

f(x).

continuity of a function f(x) at a point x = a.

Intermediate Value Theorem.

uniformly continuous function on an interval.

every continuous function on a closed bounded interval is unifomly continuous.

Extreme Value Theorem.

the definition of the derivative as a limit.

basic laws of differentiation (sum rule, product rule, chain rule, etc.).

the Dirichlet function D(x)

Mean Value Theorem.

partition of an interval [a, b].

upper sums and lower sums, U(P, f) and L(P, f).
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integrable function on [a, b]; definition of the integral in terms of upper and lower sums.

if f is continuous on [a, b], then it is integrable on [a, b].

if f is increasing or decreasing on [a, b], then it is integrable on [a, b].

First and Second Fundamental Theorems of Calculus.

Here is a list of some of the things that you should know from Chapter 4:

infinite sequences of numbers and the notation {an}∞n=1.

convergence of a sequence: lim
n→∞

an = L if for every ε > 0, there is an integer N such that for

all n ≥ N , |an − L| < ε.

bounded sequence.

Theorem: Every convergent sequence is bounded.

Theorem: If lim
n→∞

an = L and lim
n→∞

bn = M , then lim
n→∞

(an + bn) = L + M — and similar

results for subtraction, multiplication, and division.

monotone, increasing, and decreasing sequences.

Theorem: Monotone Convergence Theorem: A bounded monotone sequence is convergent.

Cauchy sequence: {an}∞n=1 is Cauchy if for every ε > 0, there is an integer N such that for all
n ≥ N and m ≥ N , |an − am| < ε.

Theorem: A sequence is convergent if and only if it is Cauchy.

infinite series of numbers and the notation

∞∑
n=1

an.

partial sums of a series.

convergence of a series, defined as the convergence of the sequence of partial sums.

the harmonic series,
∞∑

n=1

1

n

p-series,

∞∑
n=1

1

np
, convergent if and only if p > 1.
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geometric series,
∞∑

n=0

rn (convergent to
1

1− r
if |r| < 1 and divergent otherwise).

Theorem: If

∞∑
n=1

an = L and

∞∑
n=1

bn = M , then

∞∑
n=1

(an + bn) = L+M — and similar results

for constant multiples and subtraction (but not for mutiplication or division).

absolute convergence.

Theorem: If a series converges absolutely, then it converges.

Theorem: The n-th term test: If

∞∑
n=1

an converges, then lim
n→∞

an = 0. Equivalently, if

lim
n→∞

an 6= 0, then

∞∑
n=1

an diverges.

Theorem: The Comparison Test: Suppose

∞∑
n=1

an and

∞∑
n=1

bn are series of positive terms. If

the series

∞∑
n=1

bn converges, and if there is an integer N such that for all n ≥ N , an ≤ bn, then the

series

∞∑
n=1

an converges. If the series

∞∑
n=1

bn diverges, and if there is an integer N such that for all

n ≥ N , an ≥ bn, then the series

∞∑
n=1

an diverges.

Theorem: The Ratio Test: If lim
n→∞

|an+1|
|an|

exists, then if the limit is less than 1 (including

0), the series

∞∑
n=1

an converges absolutely, and if the limit is greater than 1 (including ∞) then the

series diverges.

Theorem: The Root Test: If lim
n→∞

n
√
|an| exists, then if the limit is less than 1 (including 0),

the series

∞∑
n=1

an converges absolutely, and if the limits is greater than 1 (including ∞) then the

series diverges.

conditional convergence.

alternating series.

Theorem: Alternating Series Test: If the sequence of non-negative terms {an}∞n=1 is decreas-

ing and converges to zero, then the series

∞∑
n=1

(−1)nan is convergent
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sequences of functions, {fn}∞n=1.

pointwise convergence of a sequence of functions on a domain D.

uniform convergence of a sequence of functions on a domain D: {fn}∞n=1 converges uniformly
to f on D if for every ε > 0, there is an integer N such that for all n ≥ N and all x ∈ D,
|fn(x)− f(x)| < ε.

Theorem: The uniform limit of a sequence of continuous functions is continuous.

Theorem: If {fn}∞n=1 converges uniformly on the interval [a, b], then the limit function is

integrable on [a, b] and

∫ b

a

(
lim
n→∞

fn(x)
)
dx = lim

n→∞

(∫ b

a

fn(x) dx

)
.

Theorem: If {fn}∞n=1 converges (pointwise) on an interval I, and if each fn is differentiable
on I, and if each fn is continuous, and if {f ′n}∞n=1 converges uniformly on I, then lim

n→∞
fn is

differentiable on I, and
d

dx

(
lim
n→∞

fn(x)
)

= lim
n→∞

f ′n(x), for x ∈ I.

series of functions,

∞∑
n=1

fn(x).

convergence of a series of functions.

uniform convergence of a series of functions and its consequences.

power series,

∞∑
n=0

an(x− a)n.

radius of convergence of a power series.

interval of convergence of a power series.

term-by-term differentiation and integration of power series.

Taylor series of a function,

∞∑
n=0

f (n)(a)

n!
(x− a)n.

the Taylor series of an infinitely differentiably function does not necessarily converge to that
function.

real-analytic function.
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