Math 331, Homework 6

This homework covers the sequences and continuity handout and Section 2.6. It is due next Friday, October 11.

Exercise 1. Let X be any set, and define the discrete metric ρ on X as in Exercise 1 from Handout 1: $\rho: X \times X \to \mathbb{R}$ by $\rho(a, b) = \begin{cases} 0 & \text{if } a = b \\ 1 & \text{if } a \neq b \end{cases}$. Suppose that $\{x_i\}_{i=1}^{\infty}$ is a convergent sequence in the metric space (X, ρ) , Show that there is a number N such that $x_N = x_{N+1} = x_{N+2} = \cdots$. (We say that the sequence is "eventually constant.")

Exercise 2. Let (X, ρ) be the metric space from the previous exercise, and let (M, d) be any metric space. Show that any function $f: X \to M$ is continuous. (There are at least three possible proofs: using the definition of continuity, using Theorem 1 from the handout, or using Theorem 3 from the handout.)

Exercise 3. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} x & \text{if } x \leq 1 \\ x+1 & \text{if } x > 1 \end{cases}$. Find a sequence $\{x_i\}_{i=1}^{\infty}$ that converges to 1, but $\{f(x_i)\}_{i=1}^{\infty}$ does not converge to f(1). And find an open subset \mathcal{O} of \mathbb{R} such that $f^{-1}(\mathcal{O})$ is not open. (\mathbb{R} here has its usual metric.)

Exercise 4. Let (M, d) be a metric space, and let $f: M \to \mathbb{R}$ and $g: M \to \mathbb{R}$ be two functions from M to \mathbb{R} (where \mathbb{R} has its usual metric). Let $x \in M$. Suppose f and g are continuous at x. Show that the function f + g is continuous at x. (Hint: Just imitate the proof for functions from \mathbb{R} to \mathbb{R} .)

Exercise 5. Let (M, d) be a non-empty compact metric space and let $f: M \to \mathbb{R}$ be a continuous function (where \mathbb{R} has its usual metric). Show that f(x) achieves a minimum value and a maximum value. This is a generalization of the Extreme Value Theorem, which our textbook calls the Min-Max Theorem. (Hint: Use the fact that f(M) is compact—and therefore closed and bounded—and apply Exercise 8 from Handout 1.)

Exercise 6 (Problem 2.6.7b from the textbook). Show that the function $p(x) = x^4 - x^3 + x^2 + x - 1$ has at least two roots in the interval [-1, 1].

Exercise 7 (Problem 2.6.2 from the textbook). Show that a linear function f(x) = mx + b is uniformly continuous on $(-\infty, \infty)$.

Exercise 8 (Problem 2.6.10ac from the textbook).

(a) Prove: If f is uniformly continuous on the bounded open interval (a, b), then f is bounded on (a, b).

(b) Why must the interval in part (a) be bounded?

Exercise 9 (Problem 2.6.12ab from the textbook). We say that a function f satisfies a "Lipschitz condition" if there is a positive real number M such that for all $x, y \in \mathbb{R}$, $|f(x) - f(y)| < M \cdot |x - y|$.

(a) Show that any function that satisfies a Lipschitz condition is uniformly continuous on $(-\infty, \infty)$.

(b) Show that the function $f(x) = \frac{1}{1+|x|}$ is uniformly continuous on $(-\infty, \infty)$.