Math 331, Fall 2019, Some suggested problems on integration

These problems are not homework; solutions will not be collected. These problems are **not** meant as a review for the test.

1. (a) Let $c \in [a, b]$, let $y \in \mathbb{R} \setminus \{0\}$, and define a function p on [a, b] by p(c) = y and p(x) = 0 for $x \neq c$. Show that f is integrable on [a, b] and that $\int_a^b f = 0$.

(b) Let h be a function on [a, b] such that h(x) = 0 except at finitely many points. Show h is integrable and $\int_a^b h = 0$. (You can use part (a), induction, and the linearity of integration.)

(c) Suppose f and g are functions on [a, b]. Suppose that f is integrable and g(x) = f(x) except at finitely many points in [a, b]. Show that g is integrable on [a, b] and $\int_a^b f = \int_a^b g$. (Hint: Consider g - f.)

2. Prove carefully using the definition of Riemann integral that if f is a continuous function on [a, b], and $f(x) \ge 0$ for all $x \in [a, b]$, and there is a $c \in [a, b]$ for which f(c) > 0, then $\int_a^b f > 0$. Does the conclusion still hold if f is only assumed to be integrable rather than continuous?

3. We have used the following fact; you should prove it carefully, using the definitions of inf, sup, and the Riemann integral: Let f be an integrable function on [a, b], and suppose that I is a number satisfying $L(P; f) \leq I \leq U(P; f)$ for every partition P of [a, b]. Then $I = \int_{a}^{b} f$.

4. Suppose f is integrable on [a, b]. Prove that |f| is integrable on [a, b]. Here is an outline of a proof: Let $\epsilon > 0$. Let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of [a, b] such that $U(P; f) - L(P; f) < \epsilon$. As usual, let $M_i = \sup\{f(x) \mid x \in [x_{i-1}, x_i]\}$, and let $m_i = \inf\{f(x) \mid x \in [x_{i-1}, x_i]\}$, so that $U(P; f) - L(P; f) = \sum_{i=0}^{n} (M_i - m_i)(x_i - x_{i-1}) < \epsilon$. Let $M'_i = \sup\{|f(x)| \mid x \in [x_{i-1}, x_i]\}$, and let $m'_i = \inf\{|f(x)| \mid x \in [x_{i-1}, x_i]\}$. We then have $U(P; |f|) - L(P; |f|) = \sum_{i=0}^{n} (M'_i - m'_i)(x_i - x_{i-1})$. Show that $M'_i - m'_i \leq M_i - m_i$, using properties of inf and sup and the fact that $||f(x)| - |f(y)|| \leq |f(x) - f(y)|$. And use that to deduce that $U(P; |f|) - L(P; |f|) < \epsilon$.

5. Suppose that f is a function on [a, b] and that |f| is integrable on [a, b]. Is f necessarily integrable on [a, b]?

6. Suppose that f is integrable on [a, b]. By problem 4, above, |f| is integrable on [a, b]. Use problem 3.4.8 and the fact that $-f(x) \leq |f(x)| \leq f(x)$ to prove that $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$.

7. Suppose that f is integrable on [a, b]. Define $F(x) = \int_a^x f$ for $x \in [a, b]$, and define $G(x) = \int_a^x F$ for $x \in [a, b]$. (How do we know $\int_a^x F$ exists?) Show that G is differentiable on [a, b].

8. Let g be a bounded function on [a, b]. Let $P = \{x_o, x_1, \ldots, x_n\}$ be a partition of [a, b]. Suppose that U(P;g) = L(P;g). Explain why this means g is integrable. What is $\int_a^b g$? What does g actually look like?