
Math 331, Fall 2019 Midterm Exam

This test is due in class on Wednesday, October 23. You should do this test
on your own, using only your textbook, class notes, and previous work in the
course as reference. You should not work with other students, and you should
not consult anyone except me. You can ask questions about the test in class, in
office hours, and by email. I might give some hints and clarifications, but I am
unlikely to give extensive, detailed help.

This test counts for 15% of your overall grade for the course. There are 8
problems. Although some problems are more difficult than others, all problems
will count equally. Note that for the question number 8, you have a choice of
doing either 8-A or 8-B.

Note: There will be no “rewrites” of midterm exam problems. Be
sure to show all of your work!

1. In class, we proved directly that for n ∈ N, d
dxx

n = nxn−1, using the definition of derivative.
Give an alternative proof of this fact using mathematical induction, the product rule for
derivatives, and the fact that d

dxx = 1.

2. In class, we proved the product rule for derivatives directly from the definition of derivative.
This problem asks you to provide a different proof. You should assume that the sum and
constant multiple rules for derivatives have already been proved.

a) Let f be a function that is differentiable at a, and let g(x) = f(x)2. Show directly, using
the definition of derivative, that g is differentiable at a and that g′(x) = 2f(x)f ′(x).

b) Recall that ab = 1
4

(
(a+ b)2− (a− b)2

)
. Use this fact and part (a) of this problem to prove

the product rule for derivatives.

3. Suppose that f(x) and g(x) are uniformly continuous on the interval I (which is not necessarily
closed or bounded). Show directly from the definition of uniform continuity that f(x) + g(x)
is uniformly continuous on I.

4. a) Show directly from the definition of convergence of an infinite sequence that lim
n→∞

1
n = 0.

b) Use the result from part (a) and Theorem 4.1.5 (properties of limits of sequences) to find
the following limit. (Start by multiplying numerator and denominator by 1

n4 ).

lim
n→∞

3n4 − 2n+ 7

5n4 + 3n3 − 1

5. Let A and B be subsets of R. Suppose that x is an accumulation point of the set A∪B. Show
that x is an accumulation point of A or that x is an accumulation point of B (or both). (Hint:
Try a proof by contradiction.) If you prefer to work with subsets of a metric space (M,d)
instead of R, you can do that instead.

6. Let X be a bounded, non-empty subset of R. Suppose that X has the following property: If
a ∈ X and b ∈ X and c is some number satisfying a < c < b, then c ∈ X. Prove that X must
be a bounded interval of one of the forms [x, y], [x, y), (x, y], or (x, y). (Hint: This is harder
than it looks because a set does not necessarily contain its least upper bound or greatest lower
bound.)



7. Let (M,d) be a metric space, and let X be a subset of M . This question explores several
alternative definitions for what it means for X to be dense in M . Prove that the following are
equivalent:

a) For every open ball Bε(x) in M , the intersection X ∩Bε(x) is not empty.

b) For every non-empty open set U ⊆M , the intersection X ∩ U is not empty.

c) X = M (where X is the closure of X).

8. As the last problem of the test, you should do one of the following two alternatives, 8-A or 8-B.
Each alternative proves an interesting result! (If you would like to work on both alternatives,
you can get a small amount of extra credit by doing both correctly.)

8-A. This question uses the Heine-Borel theorem to prove a somewhat surprising property of open
covers of a closed interval [a, b]. Given an open cover of [a, b], not only is every point z ∈ [a, b]
in one of the open sets in the cover, but in one of the open sets that contain z, z is not too
close to the boundary of the open set. Stated formally, we have the following theorem:

Theorem. Suppose {Oα |α ∈ A} is an open cover of the closed, bounded interval [a, b].
Then there is a λ > 0 such that for every z ∈ [a, b], there is an open set Oα in the open cover
that contains the entire interval (z − λ, z + λ).

Fill in the details in the following proof of this theorem. Note that only parts (a) and
(c) are non-trivial, and even those two parts are not hard—but you do have to pay careful
attention to where a factor of 2 is included and where it is not. (As an alternative to working
in R, you can state and prove the corresponding theorem for compact subsets of metric spaces.
The only difference is that open intervals (x − ε, x + ε) are replaced by open balls Bε(x). In
fact, the notation for metric spaces is probably a little easier to handle!)

a) For each x ∈ [a, b], there is a λx > 0 such that (x− 2λx, x+ 2λx) ⊆ Oα for some α.

b) The intervals Ix = (x − λx, x + λx), for x ∈ [a, b], cover [a, b] and so there is a finite
subcover Ix1

, Ix2
, . . . , Ixn

. Let λ = min(λx1
, λx2

, . . . , λxn
, ).

c) Let z ∈ [a, b], and choose i such that z ∈ (xi − λxi
, xi + λxi

). Then (z − λ, z + λ) ⊆
(xi − 2λxi

, xi + 2λxi
).

d) (z − λ, z + λ) ⊆ Oα for some α.

8-B. This question concerns infinite sequences. You can write the proof for sequences in R or for
sequences in a metric space. The proof would be essentially the same in either case; only the
notation changes slightly.

Let {xn}∞n=1 be an infinite sequence. We define a rearrangement of the sequence as follows:
Let s:N → N be a bijective function. Then {xs(i)}∞i=1 is a rearrangement of the sequence
{xn}∞n=1. The rearranged sequence has exactly the same terms as the original sequence, just
in a different order.

Suppose that {xn}∞n=1 is a convergent sequence and that lim
n→∞

xn = L, and let {xs(i)}∞i=1 be

a rearrangement of the sequence. Show that the rearranged sequence {xs(i)}∞i=1 is convergent
and converges to the same limit, lim

i→∞
xs(i) = L. (Hint: This is easier than it looks. Note that

the set {x1, x2, . . . , xN} is finite.)


