Math 331

This homework is due by the end of the day on Friday, September 11 Problems are on Sections 1.3 and 1.4, not including Bolzano-Weirstrass.

Problem 1 (From Problem 1.3.7 in the textbook). Suppose that $(\mathbb{F}, +, \cdot)$ is a field, and $S \subseteq \mathbb{F}$. We say that S is a subfield of \mathbb{F} if it is a field under the same addition and multiplication as \mathbb{F} . To show that S is a subfield of \mathbb{F} , it is enough to show that $0 \in S$, $1 \in S$, and S is closed under addition, multiplication, taking additive inverses, and taking multiplicative inverses. The other field axioms are automatically true for multiplication and addition in S, since they are already true in \mathbb{F} .

Let $\mathbb{Q}[\sqrt{2}] = \{r + s\sqrt{2} \mid r, s \in \mathbb{Q}\}$. Show that $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R} . (Hints: Note that r and s can be zero in $r + s\sqrt{2}$. To show that S is closed under taking multiplicative inverses of non-zero elements, you might need to show that if $r + s\sqrt{2} \neq 0$, then $r^2 - 2s^2 \neq 0$.)

Problem 2 (Problem 1.3.11 from the textbook). Let $(F, +, \cdot)$ be an ordered field. Use the definition of x < y and the order axioms to prove the transitive property of <. That is, show that for any $a, b, c \in \mathbb{F}$, if a < b and b < c, then a < c. [Note: Since \mathbb{F} is not necessarily \mathbb{R} , you can't use common facts that you know about \mathbb{R} . You can only use the actual definition and axioms.]

Problem 3 (Problem 1.3.12 from the textbook. We proved that 1 > 0 in class; this problem gives an alternative proof). Suppose $(\mathbb{F}, +, \cdot)$ is an ordered field, and $a \in \mathbb{F}$. Prove: If $a \neq 0$ then $a^2 > 0$. Conclude that 1 > 0. [You can use Theorem 1.3.6, which says that (-a)(-b) = ab in any field.]

Problem 4. (a) Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k$ be some finite number of open subsets of \mathbb{R} . Prove that their intersection, $\bigcap_{i=1}^k \mathcal{O}_i$, is open. (Hint: Use the characterization of open that involves $\varepsilon > 0$. Start by taking arbitrary $x \in \bigcap_{i=1}^k \mathcal{O}_i$.) (b) Show that the intersection of an infinite number of open sets is not necessarily open by finding $\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$. (Justify your answer!)

Problem 5. Consider the **unbounded** closed interval $[0, \infty)$. Find an open cover of this interval that has no finite subcover. (Prove your answer!)

Problem 6 (Problem 1.4.3 from the textbook). Suppose that $\{\mathcal{O}_{\alpha} \mid \alpha \in A\}$ is an open cover of the interval [0, 1). Suppose furthermore that $1 \in \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$. Prove that there is finite subcover of [0, 1) from $\{\mathcal{O}_{\alpha} \mid \alpha \in A\}$. [This question tests your understanding of the proof of the Heine-Borel Theorem.]

Problem 7. Let f(x) be a real-valued function that is defined on an interval I. We say that f is bounded above on I if there is a number M such that f(x) < M for all $x \in I$.

Suppose that f(x) is defined on the bounded, closed interval [a, b]. Suppose that for every $x \in [a, b]$, there is an $\varepsilon > 0$ such that f is bounded above on the interval $(x - \varepsilon, x + \varepsilon)$. Use the Heine-Borel theorem to prove that f is bounded above on [a, b]. (Hint: Compare this an example about functions that was done in class.)