Math 331 Homework 4

This homework is due by the end of the day on Saturday, September 26

Problem 1. Suppose that f(x) is defined and bounded on an open interval containing 0, except possibly at 0 itself. (That is, there is a number B such that |f(x)| < B for all x in that interval, except possibly x = 0.) Show that $\lim_{x \to 0} xf(x) = 0$. [Hint: Use the Squeeze Theorem and the fact that |x| is a continuous function.]

Problem 2. Suppose that f(x) is a continuous function. Show that |f(x)| is also continuous. [Hint: This is trivial. Apply known facts.]

Problem 3 (Textbook problem 2.5.7). Suppose that f is continuous at a and that f(a) > 0. Show that there is a $\delta > 0$ such that f(x) > 0 for all x in the interval $(a - \delta, a + \delta)$. [Hint: Let $\varepsilon = f(a)$.]

Problem 4 (Textbook problem 2.6.7b). Show that $p(x) = x^4 - x^3 + x^2 + x - 1$ has at least two roots in the interval [-1, 1].

Problem 5. Prove the second half of the Extreme Value Theorem. That is, show that if f is continuous on a closed, bounded interval [a,b], then there is a $x_o \in [a,b]$ such that $f(x) \geq f(x_o)$ for all $x \in [a,b]$. [Hint: An easy way to do this is to consider the function g(x) = -f(x).]

Problem 6. Show that any linear function f(x) = mx + b is uniformly continuous on \mathbb{R} .

Problem 7. Let $f(x) = \frac{1}{x}$.

- (a) Show that for any c > 0, f(x) is uniformly continuous on $[c, \infty)$,
- (b) Show that f(x) is not uniformly continuous on $(0, \infty)$.

Problem 8 (Textbook problem 2.6.12ab). We say that a function f satisfies a **Lipschitz** condition if there is a positive real number M such that for all $x, y \in \mathbb{R}$, |f(x) - f(y)| < M|x - y|.

- (a) Show that if f satisfies a Lipschitz condition, then f is uniformly continuous on $(-\infty,\infty)$.
- (b) Show that $f(x) = (1 + |x|)^{-1}$ is uniformly continuous on $(-\infty, \infty)$ by showing that it satisfies a Lipschitz condition. [Hint: Recall that $||x| |y|| \le |x y|$.]