This homework is due by 11:59 PM on Tuesday, November 3.

Problem 1. We showed that if f is integrable on $[a, b]$, then $|f|$ is also integrable on $[a, b]$. Now, suppose we know that $|g|$ is integrable on $[a, b]$. Is it necessarily true that g is integrable on $[a, b]$? [Hint: Consider a simple modification of the Dirichlet function.]

Problem 2. Suppose f is a continuous function on $[a, b]$ and $f(x)>0$ for $x \in[a, b]$. Define $F(x)=\int_{a}^{x} f$. Prove that F is strictly increasing on $[a, b]$. [Hint: This is trivial, using two facts that we have proved.]

Problem 3. Suppose that f and g are continuously differentiable functions on $[a, b]$. So, f, g, f^{\prime} and g^{\prime} are all continuous. Prove the Integration by Parts formula

$$
\int_{a}^{b} f(x)^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

[Hint: One way to do this is to define, for $x \in[a, b], P(x)=\int_{a}^{x} f(t) g^{\prime}(t) d t$ and $Q(x)=$ $\left.f(t) g(t)\right|_{a} ^{x}-\int_{a}^{x} f^{\prime}(t) g(t) d t=f(x) g(x)-f(a) g(a)-\int_{a}^{x} f^{\prime}(t) g(t) d t$. Show that $P^{\prime}(x)=Q^{\prime}(x)$ and $P(a)=Q(a)$, and explain why this means $P(x)=Q(x)$ for all $x \in[a, b]$. Finally, use $P(b)=Q(b)$.

Problem 4. Let f be the polynomial $f(x)=3+2 x^{2}-5 x^{3}+x^{4}$. Use Taylor's Theorem to write f as a polynomial in powers of $(x-1)$. (That is, find the Taylor polynomial, $p_{4,1}(x)$, of degree 4 at 1 for f.)

Problem 5. Find the general Taylor polynomial at $0, p_{n, 0}(x)$, for the function $\ln (x+1)$.

Problem 6 (from 4.2.14 from the textbook). We have shown that the $n^{\text {th }}$ Taylor polynomial for e^{x} at 0 is $p_{n, 0}(x)=\sum_{k=1}^{n} \frac{1}{n!} x^{n}$. Show that e is irrational by using proof by contradiction. Suppose, for the sake of contradiction, that $e=\frac{p}{q}$ for some integers p and q.
(a) Use the Lagrange form of the remainder term from Taylor's Theorem to show that there is a $c \in[0,1]$ such that $\frac{p}{q}-\left(\frac{1}{0!}+\frac{1}{1!}+\cdots+\frac{1}{n!}\right)=\frac{e^{c}}{(n+1)!}$.
(b) Multiply both sides of the equation in (a) by n !, and show that left side of the resulting equation is an integer when $n \geq q$.
(c) Show that the right side of the equation that you got in part (b) is not an integer when $n>e$. Conclude that e is irrational.

