
Math 331 Midterm Exam

This test is due before class time on Monday, October 26. You should do this
test on your own, using only your textbook, class notes, and previous work in the
course as reference. You should not work with other students, you should not use
the Internet or other references, and you should not consult anyone except me. You
can ask questions about the test in class and by email. If I answer an emailed
question, I will send my response to everyone in the class. I might give some hints
and clarifications, but I am unlikely to give extensive, detailed help. Be sure to
show all of your work! Note: There will be no “rewrites” of midterm exam
problems. Grades on the exam might be curved, if they would lower the class
average substantially.

This test counts for 15% of your overall grade for the course. You should do
only 7 of the 8 problems on this test. If you submit answers for all problems,
your answer for problem 8 will be ignored. If you cannot prove something, you
should still turn in whatever work you can do on it for partial credit—maybe an
intuitive argument or other thoughts. Although some problems are more difficult
than others, and some are quite easy, all 7 problems will count equally.

Problem 1. Recall that xn − yn = (x − y)(xn−1 + xn−2y + xn−3y2 + · · · + xyn−2 + yn−1)
for any n ∈ N. Use this fact to prove directly from the definition of the derivative that
d
dx
xn = nxn−1 for n ∈ N.

Problem 2. Let f be an integrable function on [a, b]. Suppose that A ≤ f(x) ≤ B for all

x ∈ [a, b]. Show, from the definition of the integral, that A · (b − a) ≤
∫ b

a
f ≤ B · (b − a).

(Hint: Use the trivial partition P = {x0, x1} where x0 = a, x1 = b.)

Problem 3. Let A and B be subsets of R. Suppose that x is an accumulation point of the
set A∪B. Show that x is an accumulation point of A or x is an accumulation point of B (or
both). (Hint: Try a proof by contradiction.) If you prefer to work with subsets of a metric
space (M,d) instead of R, you can do that instead.

Problem 4. Suppose that f(x) and g(x) are uniformly continuous on the interval I (which
is not necessarily closed or bounded). Show directly from the definition of uniform continuity
that f(x) + g(x) is uniformly continuous on I.

Problem 5. Let X and Y be non-empty, bounded subsets of R. Suppose that for every
x ∈ X and for every y ∈ Y , x < y. Prove that lub(X) ≤ glb(Y ). Is it always true that
lub(X) < glb(Y ) ?
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Problem 6. This question concerns infinite sequences. You can write the proof for sequences
in R or for sequences in a metric space. The proof would be essentially the same in either
case; only the notation changes slightly.

Let {xn}∞n=1 be an infinite sequence. We define a rearrangement of the sequence as follows:
Let s : N → N be a bijective function. Then {xs(i)}∞i=1 is a rearrangement of the sequence
{xn}∞n=1. The rearranged sequence has exactly the same terms as the original sequence, just
in a different order.

Suppose that {xn}∞n=1 is a convergent sequence and that lim
n→∞

xn = L, and let {xs(i)}∞i=1 be

a rearrangement of the sequence. Show that the rearranged sequence {xs(i)}∞i=1 is convergent
and converges to the same limit, lim

i→∞
xs(i) = L. (Hint: This is easier than it looks. Note that

the set {x1, x2, . . . , xN} is finite. Also, s has an inverse function s−1.)

Problem 7. Let (M,d) be a metric space. Recall that the open ball of radius ε about a
point x ∈M is defined as Bε(x) = {z ∈M | d(z, x) < ε}. Suppose that we define the closed
ball of radius ε about x as Bε(x) = {z ∈M | d(z, x) ≤ ε}. We could also consider the closure
of the open ball, Bε(x), where the closure of a set consists of the set plus its accumulation
points.

(a) Show that Bε(x) = {z ∈ M | d(z, x) ≤ ε} is a closed subset of M . (Hint: Show
M rBε(x) is open, noting that z /∈ Bε(x) means d(z, x) > ε.)

(b) In R, Bε(x) is the open interval (ε− ε
2
, ε + ε

2
). What is Bε(x) in R? What is Bε(x) in

R. You do not have to prove your answers, which should be obvious.

(c) Give an example to show that Bε(x) is not always equal to Bε(x) ? (Hint: Consider
a metric space with the discrete metric, and consider an open ball of radius 1.)

Problem 8. This problem proves that two integrable functions that differ at only one point
have the same integral. (Note: A simple induction would then show that functions that
agree except at a finite number of points have the same integral; you do not need to
prove this.)

(a) Let f be the function defined on [a, b] by f(x) =

{
1 if x = a

0 if x 6= a
. Show that f is

integrable and
∫ b

a
f = 0. (Hint: For ε > 0, find a partition P of [a, b] such that

L(P, f) ≤ 0 ≤ U(P, f) and U(P, f) − L(P, f) < ε. It is possible to do this with a
specific partition that has just two subintervals.) A similar argument shows that a
function whose value is 1 at b and 0 at other points of [a, b] is integrable and has
integral 0; you do not need to prove this, but you can assume it for part (b).

(b) Let c ∈ (a, b) and consider the function g(x) =

{
1 if x = c

0 if x 6= a
. Show that g is integrable

and
∫ b

a
g = 0. (Hint: Use part (a) and the additivity of the integral.)

(c) Let f be an integrable function on [a, b]. Suppose that g is a function that is defined
on [a, b], that c ∈ [a, b], and that g(x) = f(x) except that g(c) 6= f(c). Show that g

is integrable and
∫ b

a
g =

∫ b

a
f . (Hint: Use parts (a) and (b) and the linearity of the

integral.)
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