
Math 331, Fall 2020, Test 2 Information

The second in-class test is scheduled to take place on Friday, November 20. It will cover
Sections 3.1 through 3.6 and Sections 4.1 through 4.4. (Taylor polynomials are not included.)
There will be no questions specifically directed towards material from Chapters 1 and 2, but
you still need to know that material and might need it for the test.

Questions on the test can include definitions, statements of theorems, short and long
essay questions about concepts, concrete problems, and short proofs. Any proofs on the test
will be ones that I believe should be straightforward, not requiring a great deal of thought.

Some things that you should know about for the test:

differentiability of a function at a point; differentiability on an interval

partition of a closed bounded interval

upper and lower Riemann sums (U(P, f) and L(P, f))

infimum and supremum (inf and sup)

refinement of a partition

Riemann integrable function

the Riemann integral
∫ b
a f

criteria for integrability

the Dirichlet function D(x) — discontinuous at every point; not Riemann integrable

sequences of real numbers and limits of sequences

bounded sequence

monotone sequence

Cauchy sequence

infinte series

geometric series

p-series

absolute convergence

conditional convergence

alternating series

convergence tests

Some important definitions and theorems:

Definition. Let f be a function defined on an open interval containing a. We say that f is

differentiable at a if the limit lim
x→a

f(x)− f(a)

x− a
exists. In that case, the value of the limit is

denoted f ′(a).
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Definition. A partition of [a, b] is a sequence of points P = {xo, x1, . . . , xn} such that a = xo <
x1 < · · · < xn = b. If P and Q are partitions, we say Q is a refinement of P if Q contains every
point that is in P .

Definition. Let f be a bounded function on [a, b], and let P = {xo, x1, . . . , xn} be a partition of
[a, b]. For i = 1, 2, . . . , n, let Mi = sup{f(x) |x ∈ [xi−1, xi]} and mi = inf{f(x) |x ∈ [xi−1, xi]}. We
define the upper Riemann sum of f relative to the partition as U(P, f) =

∑n
i=1Mi(xi−1−xi), and

we define the lower Riemann sum of f relative to the partition as L(P, f) =
∑n

i=1mi(xi−1−xi).

Definition. We say that a function f is integrable on [a, b] if it is bounded on [a, b] and
sup{L(P, f) |P is a partition of [a, b]} is equal to inf{U(P, f) |P is a partition of [a, b]}. In that

case, their common value is denoted
∫ b
a f and is called the (Riemann) integral of f on [a, b].

Definition. A sequence {xn}∞n=1 converges to L ∈ R if for every ε > 0, there is an N ∈ N such
that for all n ≥ N , |xn − L| < ε. If a sequence is not convergent, then it diverges.

Definition. A sequence {xn}∞n=1 diverges to +∞ if for every M ∈ R, there is an N ∈ N such that
for all n ≥ N , xn > M .

Definition. A sequence {xn}∞n=1 is increasing if for all n > m, xn ≥ xm. It is decreasing if for
all n > m, xn ≤ xm. It is monotone if it is increasing or decreasing.

Definition. A sequence {xn}∞n=1 is Cauchy if for every ε > 0, there is an N ∈ N such that for all
n,m ≥ N , |xn − xm| < ε.

Definition. The n-th partial sum of a series
∑∞

k=1 ak is
∑n

k=1 ak.

Definition. A series converges to L ∈ R if the sequence of partial sums converges to L. It
diverges if it does not converge. It diverges to ±∞ if the sequence of partial sums diverges to
±∞.

Definition. The series
∑∞

k=1 an converges absolutely if
∑∞

k=1 |an| converges. It converges
conditionally if it converges but does not converge absolutely.

Theorem. (Differentiability implies continuity.) If a function f is differentiable at a, then f is
continuous at a.

Theorem. (Properties of the derivative.) [Insert the constant multiple rule, sum rule, product
rule, quotient rule, and chain rule here.]

Theorem. (Rolle’s Theorem.) Suppose that the function f is continuous on the interval [a, b] and
is differentiable on (a, b), and that f(a) = f(b) = 0. Then there is a c ∈ [a, b] such that f ′(c) = 0.

Theorem. (MVT—Mean Value Theorem.) Suppose that the function f is continuous on the

interval [a, b] and is differentiable on (a, b). Then there is a c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Theorem. (Corollaries of the MVT.) If f ′(x) = 0 on an interval, then f is constant on that
interval. If f ′(x) = g′(x) on an interval, then f and g differ by a constant on that interval. If
f ′(x) > 0 on an interval, then f is increasing on that interval. If f ′(x) < 0 on an interval, then f is
decreasing on that interval. If f ′(x) ≥ 0 on an interval, then f is non-decreasing on that interval.
If f ′(x) ≤ 0 on an interval, then f is non-increasing on that interval.

Theorem. Let f be a bounded function on [a, b]. Let P and Q be partitions of [a, b] such that Q
is a refinement of P . Then L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

Theorem. Let f be a bounded function on [a, b], and let P and Q be any two partitions of [a, b].
Then L(Q, f) ≤ U(P, f). [This implies that the set {L(P, f) |P is a partition of [a, b]} is bounded
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above, that {U(P, f) |P is a partition of [a, b]} is bounded below, and that supP ({L(P, f)}) ≤
infP ({U(P, f)}).]

Theorem. Let f be a bounded function on [a, b]. Then f is Reimann integrable on [a, b] if and
only if for every ε > 0, there is a partition P of [a, b] such that U(P, f)− L(P, f) < ε.

Theorem. If f is a non-decreasing function, or is a non-increasing function, on [a, b], then f is
Riemann integrable on [a, b].

Theorem. If f is a continuous function on [a, b], then f is Riemann integrable on [a, b].

Theorem. (Linearity of the integral.) If f and g are Riemann integrable functions on [a, b] and

c ∈ R, then the functions cf and f + g are Riemann integrable on [a, b], and
∫ b
a cf = c

∫ b
a f , and∫ b

a (f + g) =
∫ b
a f +

∫ b
a g.

Theorem. (Additivity of the integral.) If f is defined on [a, b] and a < c < b, then f is Riemann
integrable on [a, b] if and only if f is Riemann integrable on [a, c] and f is Riemann integrable on

[c, b], and in that case,
∫ b
a f =

∫ c
a f +

∫ b
c f . [With the usual definitions of

∫ b
a f for b = a and for

b < a, this formula is valid even if c is not between a and b, as long as f is integrable on an interval
that contains a, b, and c.]

Theorem. Let f be an integrable function on [a, b], and define F (x) =
∫ x
a for x ∈ [a, b]. Then F

is continuous on [a, b].

Theorem. (First Fundamental Theorem of Calculus.) Suppose f is an integrable function on

[a, b] and g is a differentiable function on [a, b] satisfying g′(x) = f(x) for x ∈ [a, b]. Then
∫ b
a f =

g(b)− g(a).

Theorem. (Mean Value Theorem for Integrals.) Suppose that f is a continuous function on [a, b]

Then there is a c ∈ [a, b] such that
∫ b
a f = f(c)(b− a).

Theorem. (Second Fundamental Theorem of Calculus.) Let f be a continuous function on [a, b],
and define F (x) =

∫ x
a f for x ∈ [a, b]. Then F is differentiable on [a, b] and F ′(x) = f(x) for

x ∈ [a, b]. [In fact, if we only assume that f is continuous at some point c ∈ [a, b], then F is
differentiable at c, and F ′(c) = f(c).]

Theorem. (Properties of limits of sequences.) [Insert assertions about limits of sums, differences,
constant multiples, products, and quotients.]

Theorem. (Monotone Convergence Theorem.) An increasing sequence converges if and only if
it is bounded (above). A decreasing sequence converges if and only if it is bounded (below). An
increasing sequence that is not bounded above diveges to +∞. A decreasing sequence that is not
bounded below diverges to −∞.

Theorem. (Cauchy Convergence Theorem.) A sequence converges if and only if it is Cauchy.

Theorem. (Linearity of Infinite Series.) If
∑∞

k=1 ak and
∑∞

k=1 bk are convergent series, then∑∞
k=1(ak + bk) is convergent, and

∑∞
k=1(ak + bk) =

∑∞
k=1 ak +

∑∞
k=1 bk. If

∑∞
k=1 ak is a convergent

series and c ∈ R, then
∑∞

k=1 cak converges and
∑∞

k=1 cak = c
∑∞

k=1 ak.

Theorem. (Geometric Series.) The geometric series
∑∞

n=0 ar
n converges to a

1−r if |r| < 1. If
|r| ≥ 1 (and a 6= 0), then the series diverges.

Theorem. (p-series). The p-series
∑∞

n=1
1
np converges if p > 1 and diverges to +∞ if p ≤ 1.

Theorem. (n-th Term Test.) If the sequence {ak}∞k=1 does not converge to 0, then the series∑∞
k=1 an diverges.
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Theorem. (Ratio Test.) Suppose that lim
k→∞

|ak+1|
|ak| = L (where L can be a number or +∞). If

L < 1, then the series
∑∞

k=1 ak converges absolutely. If L > 1, then the series diverges. (The case
L = 1 gives no information about the series.)

Theorem. (Root Test.) Suppose that lim
k→∞

k
√
|ak| = L (where L can be a number or +∞). If

L < 1, then the series
∑∞

k=1 ak converges absolutely. If L > 1, then the series diverges. (The case
L = 1 gives no information about the series.)

Theorem. If the series
∑∞

k=1 ak converges absolutely, then it converges.

Theorem. (Alternating Series Test.) Let {ak}∞k=1 be a sequence of positive terms. If the sequence
is decreasing and lim

k→∞
ak = 0, then the alternating series

∑∞
k=1(−1)k+1ak converges.
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