
Outline of Complex Fourier Analysis

This handout is a summary of three types of Fourier analysis that use complex num-
bers: Complex Fourier Series, the Discrete Fourier Transform, and the (continuous) Fourier
Transform.

1 Complex Fourier Series

The set of complex numbers is defined to be C = {x + iy | x, y ∈ R}, where i =
√
−1 . The

complex numbers can be identified with the plane, with x + iy corresponding to the point
(x, y). If z = x+ iy is a complex number, then x is called its real part and y is its imaginary

part. The complex conjugate of z is defined to be z = x − iy. And the length of z is given
by |z| =

√

x2 + y2. Note that |z| is the distance of z from 0. Also note that |z|2 = zz.
The complex exponential function eiθ is defined to be equal to cos(θ)+ i sin(θ). Note that

eiθ is a point on the unit circle, x2 + y2 = 1. Any complex number z can be written in the
form reiθ where r = |z| and θ is an appropriately chosen angle; this is sometimes called the
polar form of the complex number. Considered as a function of θ, eiθ is a periodic function,
with period 2π. More generally, if n ∈ Z, einx is a function of x that has period 2π.

Suppose that f : R → C is a periodic function with period 2π. The Complex Fourier

Series of f is defined to be
∞

∑

n=−∞

cne
inx

where cn is given by the integral

cn =
1

2π

∫ π

−π

f(x)e−inx dx

for n ∈ Z. The numbers cn are called the complex Fourier coefficients of f . The Fourier
series is only defined if all these integrals are defined. This will be true, for example, if f is
continuous or if f is bounded and has only a finite number of jump discontinuities; however,
weaker conditions will also work. You should think of the doubly infinite sequence {cn}n=∞

n=−∞

as being a transform of f , while the Fourier series is actually the inverse transform that takes
the sequence {cn}n=∞

n=−∞
and uses it to define a function. In fact, if f is continuous, then the

Fourier series will converge to f , and if f is continuous except for a finite number of jump
discontinuities, then the series converges to f at every point of continuity while at the jump
discontinuities it converges to the average of the left and right hand limits.

Complex vector spaces can be defined in exactly the same way as real vector spaces,
except that scalar multiplication refers to multiplication by complex numbers rather than
multiplication by real numbers. Linear independence and bases are also defined just as in
the case of real vector spaces. The set Cn is a complex vector space of dimension n over C.
(It can also be considered a real vector space of dimension 2n over R.) In Cn, we define the
scalar product of two vectors z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) to be

z · w = z1w1 + z2w2 + · · ·+ znwn
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Note that z · z = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2. In particular, z · z is a
positive real number. We define the norm |z| =

√
z · z .

The set of continuous complex-valued functions f : R → C with period 2π is a complex
vector space. We define a scalar product on this vector space by

〈f, g〉 =
1

2π

∫ π

−π

f(x)g(x) dx

With this definition, we have

〈f, f〉 =
1

2π

∫ π

−π

f(x)f(x) dx =
1

2π

∫ π

−π

|f(x)|2 dx

so 〈f, f〉 is a positive real number. We define the norm of f by |f | =
√

〈f, f〉 . This
scalar product and norm have all the important properties of scalar product and length
for finite dimensional vector spaces. Note that the same definitions will work on larger
spaces of functions, such as functions that are continuous except for a finite number of jump
discontinuities.

If we consider the periodic functions einx, for n ∈ Z with respect to this scalar product,
we see that 〈einx, einx〉 = 1 and 〈einx, eimx〉 = 0 for n 6= m. Thus, the set {einx |n ∈ Z} is
an orthonormal set of vectors. In fact, it is a so-called “Hilbert basis” of a certain vector
space of functions. (Note that a Hilbert basis is not the same as an ordinary basis; for an
ordinary basis, every vector is a finite linear combination of basis vectors; for a Hilbert basis,
infinite linear combinations are allowed, and there are issues of convergence of infinite series
that require some advanced mathematics to deal with.) The complex Fourier coefficients of
a function f are given by cn = 〈f, einx〉, so that the cn are just the components of f with
respect to the Hilbert basis. The equation f(x) =

∑

∞

n=−∞
cne

inx is just the usual statement
about writing a vector in terms of an orthonormal basis (ignoring the issue of convergence).

(In case you are curious. . . . The correct vector space of functions to use for Fourier
series is the space of square-summable functions, that is, those for which

∫ π

−π
|f(x)|2dx < ∞.

However, the integral in this formula must be taken to be a Lesbegue integral, which is a
generalization of the Riemann integral. The sequence of Fourier coefficients {cn}n=∞

n=−∞
of a

function in this space satisfies
∑

∞

n=−∞
|cn|2 < ∞. That is, the series of Fourier coefficients is

also square-summable. In fact,
∑

∞

n=−∞
|cn|2 =

∫ π

−π
|f(x)|2dx and we get a length-preserving

isomorphism from the Hilbert space of square-summable functions to the Hilbert space of
square-summable doubly infinite sequences.)

Note, by the way, that for a periodic function f with period T , we can define the Fourier

coefficients of f as cn = 1
T

∫ T/2

−T/2
f(x)e−2πinx/T dx or, equivalently, cn = 1

T

∫ T

0
f(x)e−2πinx/T dx.

In particular, for a function that has period 1, we have cn =
∫ 1

0
f(x)e−2πinxdx.

2 Discrete Fourier Transform

Suppose that x = (x0, x2, . . . , xN−1) is a finite, discrete, complex-valued signal, where
x0, x1, . . . , xN−1 are complex numbers. (That is, x is a member of the complex vector
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space CN .) We define the Discrete Fourier Transform (DFT) of x to be the signal x̂ =
(x̂0, x̂2, . . . , x̂N−1), where

x̂j =

N−1
∑

k=0

xke
−2πijk/N

The numbers e−2πijk/N are all integral powers of ω = e2πi/N . ω is an N th root of unity; that
is, it satisfies ωN = 1. Every integral power of ω is also an N th root of unity, and in fact the
complete set of N th roots of unity is given by {ω0, ω1, . . . , ωN−1}. Using ω, we can write the
definition of x̂ as

x̂j =

N−1
∑

k=0

xkω
−jk

In fact, we can go further and define vectors w0,w1, . . .wN−1 by

wj = (ω0j, ω1j, ω2j, . . . , ω(N−1)j)

so that we then have
x̂j = x ·wj

for j = 0, 1, . . . , (N − 1). Now, {w0,w1, . . . ,wN−1} is an orthogonal set of vectors in CN

since

wj · wj =

N−1
∑

j=0

|ωkj|2 =

N−1
∑

j=0

1 = N

while for k 6= n

wj · wn =

N−1
∑

j=0

ωkjωnj =

N−1
∑

j=0

ωkjω−nj =

N−1
∑

j=0

(ωk−n)j =
1 − (ωk−n)N

1 − ωk−n
=

1 − 1

1 − ωk−n
= 0

(The next-to-last equality follows since
∑N−1

j=0 (ωk−n)j is a geometric series with ratio ωk−n.)
Since it contains N mutually orthogonal vectors, the set {w0,w1, . . . ,wN−1} is actually a
basis of CN . The components of a signal x = (x0, x2, . . . , xN−1) with respect to this basis
are given by

x·wj

wj ·wj
= 1

N
x · wj = 1

N
x̂j , for j = 0, 1, . . . , (N − 1). Saying that these are the

components of x means simply that

x =

N−1
∑

j=0

(

1

N
x̂j

)

wj =
1

N

N−1
∑

j=0

x̂jwj

or, equivalently, that for k = 0, 1, . . . , (N − 1),

xk =
1

N

N−1
∑

j=0

x̂jω
kj =

1

N

N−1
∑

j=0

x̂je
2πijk/N

This is the inverse discrete Fourier transform. (Note how neatly this follows when we think
in terms of orthogonal bases!)
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Let’s look at the relationship between complex Fourier series and the DFT. Suppose that
we start with a function f : R → C that has period 1. Given N ∈ Z+, we can obtain a signal
of length N by sampling f at N evenly spaced points in the interval [0, 1]. Specifically,
consider the signal f =

(

f(0), f( 1
N

), f( 2
N

), . . . , f(N−1
N

)
)

. The DFT of f is a signal f̂ of length
N whose components are given by

f̂n =

N−1
∑

k=0

f(x)e−2πink/N

while the Fourier coefficients of f are given by

cn =

∫ 1

0

f(x)e−2πinx dx

For n = 0, 1, . . . (N − 1), we recognize f̂n as being almost equal to a simple Riemann sum
approximation for cn, based on a partition of the interval [0, 1] with division points k/N
for k = 0, 1, . . . , (N − 1) . All that’s missing is a factor of 1

N
, which represents the length

of the subintervals: cn =
∫ 1

0
f(x)e−2πinx dx ≈

∑N−1
k=0 f(x)e−2πink/N 1

N
= 1

N
f̂n. Furthermore,

as N → ∞, the formula for 1
N

f̂n will converge to the formula for cn (provided that f
is Riemann integrable). So, from the point of view of sampling, the DFT is a kind of
approximation of complex Fourier series that improves as the number of samples is increased.
Numerical applications generally use the DFT, rather than using Fourier series directly, but
the information that is obtained is essentially the same.

The DFT is a linear transformation from CN to itself. The matrix, D, of this linear
transformation has ωjk as the entry in row j, column k, for j, k = 0, 1, . . . (N − 1). That is
(using the fact that ω0 = 1),















x̂0

x̂1

x̂2
...

x̂N−1















=















1 1 1 · · · 1
1 ω1 ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
...

1 ωN−1 ω(N−1)2 · · · ω(N−1)(N−1)





























x0

x1

x2
...

xN−1















Evaluating the matrix product in a straightforward way would require N2 multiplications
and about the same number of additions. For large values of N , this would be very time
consuming, even on a fast computer. However, when N is a power of 2, the matrix D can
be factored in a clever way into a product of simpler matrices in a way that will reduce the
total number of operations to something on the order of N log(N), which is much smaller
than N2. The DFT when computed in this way is called the Fast Fourier Transform (FFT).
The discovery of the FFT made it possible to compute the DFT quickly and efficiently. In
fact, it is fast enough to be applied to signal analysis in real time and it is the key innovation
that has made real-time digital signal processing practical. (We might return to the details
of the FFT later.)
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3 The Fourier Transform

The Fourier Transform is defined for (non-periodic) functions f : R → C. Not every function
has a Fourier Transform. A function that is integrable (

∫

∞

−∞
|f(x)|dx < ∞) will have a

Fourier transform, but looser restrictions are possible. The Fourier transform of a function
f(x) is defined to be the function f̂(ξ) given by

f̂(ξ) =

∫

∞

−∞

f(x)e−2πixξdx

The “test function” e2πixξ, as a function of x, is periodic with period 2π/ξ (when ξ 6=
0), or equivalently with frequency ξ/(2π), so integrating f against this test function gives
information about the extent to which this frequency occurs in f . However, things are not
so simple as in the Fourier series case, since the functions e2πixξ for ξ ∈ R do not form an
orthonormal set in any sense. In fact, these functions are not even integrable. Nevertheless,
we do get an inversion formula

f(x) =

∫

∞

−∞

f̂(ξ)e2πixξdξ

This formula will hold for all x if f is a continuous and integrable and if f̂(ξ) is also integrable.
In other cases, it is more problematic.

For now, lets just look at how the Fourier transform relates to complex Fourier series
and to the DFT. The integral

∫

∞

−∞
f(x)e−2πixξdx can be written as a limit of integrals over

finite intervals [−T, T ]:

f̂(ξ) =

∫

∞

−∞

f(x)e−2πixξdx = lim
T→∞

∫ T/2

−T/2

f(x)e−2πixξdx

For a fixed T , we can consider f restricted to the interval [−T/2, T/2) and find its Fourier
coefficients

cn =
1

T

∫ T/2

−T/2

f(x)e−2πixn/T dx

for all n ∈ Z. Comparing this with the above limit, we see that cn ≈ 1
T
f̂
(

n
T

)

. Note that the
larger the value of T , the better the approximation and the more closely spaced the “samples”
f̂
(

n
T

)

. We already know that Fourier series coefficients can be approximated using the DFT.
Since a Fourier transform can be approximated using Fourier series coefficients, we see that
Fourier transforms can be approximated in turn using the DFT.

We can also compare the Fourier inversion formula to Fourier series. Using the Fourier
coefficients for f restricted to the interval [T/2, T/2), we get f(x) =

∑

∞

n=−∞
cne2πixn/T ≈

∑

∞

n=−∞

(

1
T
f̂( n

T
)
)

e2πixn/T =
∑

∞

n=−∞
f̂( n

T
)e2πixn/T 1

T
≈

∫

∞

−∞
f̂(ξ)e2πixξdξ, where the last equal-

ity follows because the previous sum is a Riemann sum approximation for the integral, using
subintervals of length 1

T
. Thus, we have at least f(x) ≈

∫

∞

−∞
f̂(ξ)e2πixξdξ, and we can expect

the approximation to improve as T → ∞, giving the exact inversion formula.
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Let’s look briefly at some of the properties of the Fourier transform. An alternative
notation for the Fourier transform f̂ of a function f is F(f), or sometimes simply Ff . This
notation will make it easier to write some of the properties.

First of all, of course, the Fourier transform is a linear transformation. For any functions
f and g that have Fourier transorms and any α, β ∈ C, the function αf + βg has a Fourier
transform, and F(αf + βg) = αF(f) + βF(g). This follows easily from the linearity of the
definite integral.

Suppose we apply a horizontal translation to a function. That is, let g(x) = f(x − xo),
where xo ∈ R is a constant. Using a substitution u = x − xo in the integral, we get

ĝ(ξ) =

∫

∞

−∞

f(x − xo)e
−2πixξdx =

∫

∞

−∞

f(u)e−2πi(u+xo)ξdu

= e−2πixoξ

∫

∞

−∞

f(u)e−2πiuξdu = e−2πixoξf̂(ξ)

We see that applying a horizontal translation to f(x) will multiply its fourier transform f̂(ξ)
by the function e−2πixoξ (a function of ξ). Note that this function has constant norm 1, so
multiplying f̂(ξ) does not change the norm |f̂(ξ)|; it can be thought of as a change in phase

in the transform. The norm |f̂(ξ)| is called the spectrum or power spectrum of f . We see
that f has the same power spectrum as any of its horizontal translates. In other words, the
power spectrum tells us something about the magnitude of each frequency component in
f , but tells us nothing about where that frequency component occurs—that information is
hidden in the phase.

For a continuous function to have a Fourier transform, its limits at ∞ and −∞ must
be zero, since otherwise the integral from ∞ to −∞ would not be finite. There is an
interesting relationship between how fast f(x) approaches 0 at ±∞ and how smooth its
Fourier transform is. The converse relationship (between smoothness of f(x) and speed with
which f̂(ξ) converges to 0) also holds. Here, “smooth” means being differentiable, and being
more smooth means having derivatives of higher order. We can quantify the speed at which
a function f(x) approachs 0 by looking at the behavior of xnf(x) for positive integers n.
If lim

x→±∞

xf(x) = 0, then f must approach 0 rapidly enough to balance the fact that x is

approaching ∞; if lim
x→±∞

x2f(x) = 0, then f must approach 0 even more rapidly; and so on.

The relationship between convergence on one side of the Fourier transform and smoothness
on the other is a consequence of the following theorems:

Theorem: Let f : R → C be a function, and let g(x) = xf(x). Suppose that both f and g
are integrable on R. Then the Fourier transform of f is a differentiable function, and in fact
ĝ(ξ) = −1

2πi
f̂ ′(ξ).

Theorem: Let f : R → C be a function, and suppose that f(x), f̂(ξ), and ξf̂(ξ) are all
integrable on R. Then f is differentiable and

f ′(x) = 2πi

∫

∞

−∞

ξf̂(ξ)e2πixξdξ

6


