
Math 371, Spring 2006 Homework #1

Due in class on Friday, January 27

Part 1: Haar Wavelets

1. Find the one-level Haar transform of the finite discrete signal f = (1, 0, 2, 4, 7, 10, 12, 13, 11, 9, 7, 5).

2. Consider a constant signal f = (c, c, c, . . . , c) of length 2n, and consider the full n-level Haar
transform Hn(f) = (an |dn |dn−1 | . . . |d1). Compute Hn(f). Justify your answer.

3. Find a signal f such that the one-level Haar transform of f is H1(f) = (0, 1,−1, 0, 6, 2, 7,−5).
Does this example exhibit compaction of energy as discussed on page 7 of the textbook? Write a
paragraph discussing the idea of compaction of energy, the circumstances under which it applies,
and why the idea might be useful, even though it doesn’t apply in all cases. (For more credit,
consider the question of what happens when you look at a “random signal”.)

Part 2: Sines, Cosines, and Fourier Series

We looked briefly at the idea of writing a periodic function as a Fourier series, that is as a
sum of sine and cosine functions. This part of the homework explores the idea further. To keep
things simple, assume that the period is 2π. (L = π in the formulas from class.) In this case, a
Fourier series has the form f(x) = ao +

∑

∞

n=1
an cos(nx) +

∑

∞

n=1
bn sin(nx). The first question

is, why do we only use sine and cosine functions in which the argument is an integral multiple
of x? The answer is that we want functions that have period 2π. A function g has period 2π if
g(x + 2π) = g(x) for all x.

4. Show that the function g(x) = sin(rx), where r is a positive real number, has period 2π if and
only if r is a positive integer. (The same is true for cosine functions; you do not have to prove
this.)

The wavelength of a periodic function is the length of its shortest period. (Frequency is just
the reciprocal of wavelength.) For example, sin(nx), where n ∈ Z

+, has period 2π, but it is also
periodic with period 2π/n, and 2π/n is the smallest number with this property. So the wavelength of
sin(nx) is 2π/n. The Fourier series, therefore, is a constant plus a sum of functions of wavelengths
2π, 2π/2, 2π/3, 2π/4, . . . . (These numbers are fractions 1, 1

2
, 1

3
, 1

4
, . . . , of the “fundamental”

period 2π.) However, note that there are two functions in the sum with wavelength 2π/n, namely
an cos(nx) and bn sin(nx). Why the redundancy? If we are looking for “the” component of f(x)
that has a given wavelength, why does it come in two pieces?

5. Use the standard trigonometric identity sin(s + t) = sin(s) cos(t) + cos(s) sin(t) to show that
an cos(nx) + bn sin(nx) can be written in the form c sin(nx + d), for some real numbers c and d
with c ≥ 0 and −π ≤ d < π. (If a and b are not both zero, then c > 0.) Find explicit formulas
for c and d in terms of an and bn. (Hint: apply the formula to c sin(nx + d).)

We can rewrite c sin(nx + d) as cn sin(n(x − ϕn)), where cn = c and ϕn = −d/n. Note that we
then have −π/n < ϕn ≤ π/n. We can then write the Fourier series as ao +

∑

∞

n=1
cn sin(n(x−ϕn)).

Then, cn tells us the size of the wavelength-2π/n component of f(x). What about ϕn? (ϕn is called
the “phase” of the wave.)



6. Write a paragraph discussing the effect that the phase, ϕn, has on the wave cn sin(n(x − ϕn)).
What happens as ϕn varies from −π to π? Draw some pictures.

Finally, let’s return to the question of finding the constants an and bn. For functions with period
2π, the formulas become an = 1

π

∫

π

−π
f(x)cos(nx) dx and bn = 1

π

∫

π

−π
f(x) sin(nx) dx. The proof of

this uses the following formulas, which hold for all integers n and k:

a)

∫

π

−π

sin(nx) dx = 0

b)

∫

π

−π

cos(nx) dx = 0

c)

∫

π

−π

sin(kx) cos(nx) dx = 0

d)

∫

π

−π

sin(kx) sin(nx) dx = 0, provided n 6= k

e)

∫

π

−π

sin(kx) sin(nx) dx = π, if n = k

f)

∫

π

−π

cos(kx) cos(nx) dx = 0, provided n 6= k

g)

∫

π

−π

cos(kx) cos(nx) dx = π, if n = k

Formulas a) and b) are trivial, using the fact that sin(nx) and cos(nx) have period 2π. The
other formulas can be proved in various ways. Perhaps the easiest proofs use the following identities
for the product of sine and cosine functions:

g) sin(s) sin(t) = 1

2

(

cos(s − t) − cos(s + t)
)

h) cos(s) cos(t) = 1

2

(

cos(s − t) + cos(s + t)
)

i) sin(s) cos(t) = 1

2

(

sin(s + t) + sin(s − t)
)

These formulas can, in turn, be derived algebraically from the more common formulas for the
sine and cosine of a sum. I won’t ask you to go through the proofs of every formula, but. . .

7. Prove formulas c), d), and e).


