Due in class on Monday, April 3

- 1. Suppose that $\mathbf{x} = (1, 3, 5, 7, 9)$ and $\mathbf{y} = (2, 4, 6, 8)$. Compute the 5×4 matrix $\mathbf{x} \otimes \mathbf{y}$.
- **2.** Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{z} \in \mathbb{R}^m$, and $\alpha, \beta \in \mathbb{R}$. Show by direct calculation that $(\alpha \mathbf{x} + \beta \mathbf{y}) \otimes \mathbf{z} = \alpha(\mathbf{x} \otimes \mathbf{z}) + \beta(\mathbf{y} \otimes \mathbf{z})$.
- **3.** Suppose that $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Show by direct calculation that $\langle \mathbf{v} \otimes \mathbf{x}, \mathbf{w} \otimes \mathbf{y} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle \langle \mathbf{x}, \mathbf{y} \rangle$, where $\langle \cdot, \cdot \rangle$ represents the inner product of two vectors.
- **4.** Let U, V, W be vector spaces. A function $f: U \times V \to W$ is said to be *bilinear* if for any $\mathbf{u}, \mathbf{u}_1, \mathbf{u}_2 \in U$, $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2 \in V$, and $\alpha, \beta \in \mathbb{R}$, $f(\alpha \mathbf{u}_1 + \beta \mathbf{u}_2, \mathbf{v}) = \alpha f(\mathbf{u}_1, \mathbf{v}) + \beta f(\mathbf{u}_2, \mathbf{v})$ and $f(\mathbf{u}, \alpha \mathbf{v}_1 + \beta \mathbf{v}_2) = \alpha f(\mathbf{u}, \mathbf{v}_1) + \beta f(\mathbf{u}, \mathbf{v}_2)$. (That is, f is linear in each argument separately.) In this problem, I will write $\mathbb{R}^n \otimes \mathbb{R}^m$ to mean the vector space \mathbb{R}^{nm} considered as the tensor product of the vector spaces \mathbb{R}^n and \mathbb{R}^m .
 - a) Suppose $f: U \times V \to W$ is a bilinear function whose image is non-trivial (that is, there are vectors \mathbf{u}, \mathbf{v} such that $f(\mathbf{u}, \mathbf{v}) \neq \mathbf{0}$.) Show that f is **not** a linear function on $U \times V$.
 - b) Suppose $f: \mathbb{R}^n \times \mathbb{R}^m \to V$ is a bilinear function. Show that there is a unique linear function $\overline{f}: \mathbb{R}^n \otimes \mathbb{R}^m \to V$ such that $\overline{f}(\mathbf{x} \otimes \mathbf{y}) = f(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m$. [Note: The problem here is that not every element of $\mathbb{R}^n \otimes \mathbb{R}^m$ is of the form $\mathbf{x} \otimes \mathbf{y}$, so the formula given here does not completely define \overline{f} . Hint: Work with the standard basis vectors.]
 - c) Suppose that $F: \mathbb{R}^n \otimes \mathbb{R}^m \to V$ is a linear function. Show that there is a bilinear function $f: \mathbb{R}^n \times \mathbb{R}^n \to V$ such that $F = \overline{f}$.
 - d) Deduce that there is a one-to-one correspondence between linear functions from $\mathbb{R}^n \otimes \mathbb{R}^m$ to V and bilinear functions from $\mathbb{R}^n \times \mathbb{R}^m$ to V. (This is, in some sense, the correct meaning of the tensor product of two vector spaces.)
- 5. Tensor products can be defined for complex vector spaces in the same way as for real vector spaces. When we studied the Discrete Fourier Transform, we used a basis of \mathbb{C}^n defined in terms of n^{th} roots of unity. In particular, writing $\omega = e^{2\pi i/n}$, we defined a basis $\{\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_{n-1}\}$ where for $k = 0, 1, \dots, n-1$,

$$\mathbf{w}_k = (\omega^{0k}, \omega^{1k}, \omega^{2k}, \dots, \omega^{(n-1)k})$$
$$= (1, e^{2\pi i k/n}, e^{2\pi i 2k/n}, \dots, e^{2\pi i (n-1)k/n})$$

For a signal $\mathbf{s} = (s_1, s_2, \dots, s_n) \in \mathbb{C}^n$, the inner product $\langle \mathbf{s}, \mathbf{w}_k \rangle$ gives the frequency-k component of \mathbf{s} , For a two-dimensional DFT, we would construct a basis of \mathbb{C}^{nm} by taking bases of this form for \mathbb{C}^n and \mathbb{C}^m and forming tensor products. Describe the resulting basis of \mathbb{C}^{nm} , writing one typical basis element as an $n \times m$ matrix.