
Chapter 1

Rings

We have spent the term studying groups. A group is a set with a binary
operation that satisfies certain properties. But many algebraic structures—such
as R, Z, and Zn—come with two binary operations, usually called addition and
multiplication. These structures are examples of rings . In this chapter, we
define rings and look at some general properties of rings. However, we will
mostly restrict ourselves to the particular kinds of rings known as integral
domains and fields .

Definition 1.1. A ring R consists of a set and two binary operations on that
set. We will refer to the operations on the set as addition and multiplication ,
and we will denote them as a+b and ab (or occasionally a ·b). A ring must be an
Abelian group under addition. The multiplication operation must be associative
(a(bc) = (ab)c for all a, b, c ∈ R), and multiplication must be distributive over
addition, both from the left and from the right (a(b+c) = ab+ac and (a+b)c =
ac+ bc for all a, b, c ∈ R).

A ring is, in particular, an Abelian group under addition, so there is an
additive identity and every element of the ring has an additive inverse. We will
always denote the additive identity of the ring by 0, and the additive inverse of
an element a of R will be denoted −a. As usual, we will abbreviate a+ (−b) as
a− b, and we will refer to the operation a− b as subtraction .

Note that a ring is not a group under multiplication: There does not have
to be a multiplicative identity element, and multiplicative inverses do not have
to exist. Also note that multiplication is not assumed to be commutative. This
allows us to define several special kinds of groups in which multiplication is
assumed to have some extra properties. In particular, we will deal exclusively
with commutative rings and mostly with commutative rings with identity:

Definition 1.2. A commutative ring R is a ring in which multiplication is
commutative. That is, ab = ba for all a, b ∈ R.

Definition 1.3. An identity in a ring R is an element 1 ∈ R that serves as
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both a left and right identity for multiplication. That is, a1 = 1a = a for all
a ∈ R. We will always denote the multiplicative identity by 1.

In a commutative ring, of course, it is only necessary to assume that 1 is a
left identity, since the fact that it is a right identity as well follows immediately
by commutativity. Similarly, in a commutative ring, it is enough to assume that
multiplication is left-distributive over addition. Many of the algebraic structures
that you are familiar with are examples of commutative rings with identity.

Example 1.1. The set of integers, Z, is a commutative ring with identity under
the usual addition and multiplication operations.

Example 1.2. For any positive integer n, Zn = {0, 1, 2, . . . , n − 1} is a com-
mutative ring with identity under the operations of addition and multiplication
modulo n.

Example 1.3. The set T = {0} with addition and multiplication defined by
0 + 0 = 0 and 0 · 0 = 0 is a commutative ring with identity. T is called the
trivial ring . Note that in T , 0 = 1. The converse is also true: Any ring that
satisfies 0 = 1 is the trivial ring. (See the exercises.)

Example 1.4. The rational, real, and complex numbers, Q, R, and C, are
commutative rings with identity.

Example 1.5. The subset Q[i]of C defined by Q[i] = {a+bi | a, b ∈ Q} contains
0 and 1 and is closed under addition and multiplication. Q[i] is a commutative
ring with identity under the operations that it inherits from C.

Example 1.6. Let C([0, 1]) be the set of continuous, real-valued functions from
the closed interval [0, 1] to R. We can add and multiply functions using pointwise
operations. That is, for f, g ∈ C([0, 1]), we can define a sum f+g and a product
fg by (f + g)(x) = f(x) + g(x) and (fg)(x) = (f(x))(g(x)) for all x ∈ R. With
these operations, C([0, 1]) is a commutative ring with identity. The additive
identity is the function with constant value 0. The multiplicative identity is the
function with constant value 1. Note that some functions, such as f(x) = x2 +1,
have multiplicative inverses, while others, such as g(x) = x− x2, do not.

Consider the ring Z12. This ring contains pairs of non-zero elements, such as
4 and 3, whose product is zero (since 4 · 3 = 0 in the ring Z12). The existence of
such elements, called zero-divisors , leads to other surprising properties. For
example, in a ring with zero-divisors, the cancellation rule does not hold; that
is, it is not possible to conclude from a 6= 0 and ab = ac that b = c. To avoid
these problems, we will work mostly with rings that have no zero-divisors.

Definition 1.4. An integral domain D is a commutative ring with identity
which has no zero-divisors. That is, if a and b are elements of D such that
ab = 0, then either a is 0 or b is 0.

We note that Z, Q, R, and C are integral domains, and that Zn is an integral
domain if and only if n is prime. With the basic definitions out of the way, we
can list some of the basic properties of rings.
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Theorem 1.1. Let R be a commutative ring with identity. Then

1. 0a = 0 — zero times anything is zero

2. (−1)a = −a — the additive inverse of a is −1 times a

3. a(b− c) = ab− ac — multiplication distributes over subtraction

Proof. Let a ∈ R. Then 0a = (0 + 0)a, since 0 is the identity for addition.
By the distributive rule, (0 + 0)a = 0a + 0a. So we get that 0a = 0a + 0a.
Adding −0a to both sides then gives 0 = 0a, which proves part 1. For part 2,
we note that a + (−1)a = 1a + (−1)a = (1 + (−1))a = 0a = 0. The fact that
a+ (−1)a = 0 says that (−1)a is the additive inverse of a. Since we denote the
additive inverse of a by −a, this means that (−1)a = −a. Finally, for part 3,
a(b−c) = a(b+(−c)) = ab+a(−c) = ab+a(−1)c = ab+(−1)(ac) = ab−ac.

Theorem 1.2. Let D be an integral domain. Let b, c ∈ D and let a be a non-zero
element of D. Suppose that ab = ac. Then b = c.

Proof. Adding −ac to both sides of the equation gives ab − ac = 0. By the
distributive rule, this becomes a(b− c) = 0. Since D is an integral domain, we
can have a(b− c) = 0 only if either a = 0 or b − c = 0. Since we are assuming
that a is not zero, we must have b− c = 0. This is equivalent to b = c.

Theorem 1.3. Let D be an integral domain. Let a be an element of D that
satisfies a2 = a. Then either a = 0 or a = 1.

Proof. We can rewrite the equation a2 = a as a(a − 1) = 0. Since D is an
integral domain, this implies that either a = 0 or a− 1 = 0. In the latter case,
we have a = 1.

The fact that a0 = 0 for any a in a ring shows that a non-trivial ring can
never be a group under multiplication, since 0 cannot have a multiplicative
inverse. In a commutative ring with identity, a given element might or might
not have a multiplicative inverse. If the inverse does exist, then it is unique (by
the same proof that is used to show the uniqueness of an inverse in a group). A
commutative ring in which every non-zero element has a multiplicative inverse
is called a “field”:

Definition 1.5. Let R be a commutative ring with identity. A unit in R is an
element a ∈ R that has a multiplicative inverse. That is, there exists an element
a−1 ∈ R such that a · a−1 = 1.

Definition 1.6. A field F is a commutative ring with identity in which every
non-zero element is a unit. That is, any a ∈ F with a 6= 0 has a multiplicative
inverse. In a non-trivial field, the set F ∗ = F r {0} is an Abelian group under
multiplication, with identity 1.

Note that any field F is automatically an integral domain. Q, R, and C are
fields. Z is not a field. Zn is a field if and only if n is a prime number.
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Exercises

1. In Theorem 1.1, what does “−1” refer to?

2. Show that Zn is an integral domain if and only if n is prime.

3. Suppose that R is a commutative ring with identity in which 1 = 0. Show that
R = {0}.

4. Show that Q[i], which was defined in example 5 above, is a field.

5. Show that C([0, 1]) is not an integral domain by finding two non-zero functions f
and g such that fg = 0. (Hint: You can’t use polynomials or any functions defined
by single, simple formulas!)

6. Show that any field is an integral domain.

7. Show that any finite integral domain is a field. (Hint: Let a be a non-zero element
of a finite integral domain, and consider the sequence of powers a, a2, a3, . . . .)
Note that from this exercise and exercise 2, it follows that Zn is a field if and only
if n is prime.

8. Find an integer n and an element a ∈ Zn such that a 6= 0 and a 6= 1, but a2 = a.

9. A subring of a ring can be defined as a subset that is closed under both addition
and multiplication. Show by example that a non-trivial subring of a commutative
ring with identity does not have to contain the multiplicative identity 1. (Hint:
Look at subrings of Z.)

10. Let D be an integral domain and suppose R is a non-trivial subring of D. Suppose
that R has a multiplicative identity. Show that the multiplicative identity in R
must be the same as the multiplicative identity of D. Show by example that the
same is not necessarily true when D is simply a commutative ring with identity.
(Hint: For an example, look at subrings of Z6.)



Chapter 2

Homomorphisms and Ideals

Homomorphisms between rings can be defined similarly to group homo-
morphisms: as operation-preserving maps. Many ideas about group homomor-
phisms carry over to rings. In the case of rings, the analog of a normal subgroup
is called an ideal. An ideal can be the kernel of a ring homomorphism, and given
an ideal I in a ring R, we can form a quotient ring R/I . In this chapter, we will
look at ring homomorphisms, ideals, and quotient rings. To avoid some of the
complications that arise in the more general case, the discussion is restricted
to commutative rings. In fact, we will be most interested in integral domains.
However, much of what is covered here can be extended to non-commutative
rings.

Definition 2.1. Let R and S be commutative rings. A ring homomorphism
from R to S is a function h : R → S that is operation preserving for both
addition and multiplication. That is for any a, b ∈ R, h(a + b) = h(a) + h(b)
and h(ab) = h(a)h(b). A ring isomorphism is a ring homomorphism that is
one-to-one and onto.

In particular, a ring homomorphism from R to S is a homomorphism of the
additive groups. When we talk about the “kernel” of a ring homomorphism,
we mean its kernel when it is considered as a homomorphism of the additive
groups:

Definition 2.2. Let R and S be commutative rings, and let h : R → S be a
ring homomorphism. We define the kernel of h, denoted Ker(h), as Ker(h) =
h−1(0) = {a ∈ R |h(a) = 0}.

Ker(h) is automatically a subgroup of R considered as an additive group, but
it has additional properties owing to the fact that h also preserves multiplication.
Ker(h) is closed under multiplication, but in fact, much more is true: Ker(h) is
closed under multiplication by any element of R:

Theorem 2.1. Let R and S be commutative rings, and let h : R→ S be a ring
homomorphism. Let K = Ker(h). Then for any a ∈ K and any r ∈ R, ar ∈ K.
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Proof. Suppose a ∈ K and r ∈ R. Since a ∈ K, h(a) = 0. To show that ar ∈ K,
we only need to show that h(ar) = 0. But h(ar) = h(a)h(r) = 0 · h(r) = 0.

We define an ideal to be a subset of a ring that satisfies the same properties
as the kernel of a ring homomorphism:

Definition 2.3. Let R be a commutative ring. An ideal in R is a subset I ⊆ R
which is closed under addition and is closed under multiplication by any element
of R. That is, for any a, b ∈ I and any r ∈ R, we also have a+ b ∈ I and ar ∈ I .
Note that I = {0} is an ideal in R; it is called the trivial ideal . Also, R is an
ideal in R. An ideal in R is said to be a proper ideal if it is a proper subset of
R.

Ideals play the same role in ring theory that is played by normal subgroups
in group theory. Given an ideal I in a ring R, we can form a quotient ring
R/I . We then get a homomorphism h : R→ R/I that has kernel I . This shows
that every ideal is the kernel of some ring homomorphism. Thus, the concepts
“ideal” and “kernel of a ring homomorphism” are equivalent.

Definition 2.4. Let R be a commutative ring and let I be an ideal in R. Since
I is a subgroup of the additive group R, we can form the quotient group R/I .
We make R/I into a ring by defining (a+ I)(b+ I) = (ab) + I for a, b ∈ R. The
ring R/I is called a quotient ring . If R is a commutative ring with identity,
then R/I is also a commutative ring with identity, and its identity is 1 + I ,
where 1 is the identity in R.

For this definition to be valid, the multiplication defined on R/I must be
well-defined. It must also be associative and must distribute over the addition
defined on the additive group R/I . The proofs are left as exercises.

Theorem 2.2. Let R be a commutative ring and let I be an ideal in R. Then the
function h : R→ R/I defined by h(a) = a+I for a ∈ R is a ring homomorphism.
Furthermore, Ker(h) = I. Thus, a subset of R is an ideal if and only if it is the
kernel of some ring homomorphism.

Proof. From group theory, we know that h is a homomorphism of additive
groups and that Ker(h) = I . It only remains to show that h preserves the
operation of multiplication. But this follows immediately, since for any a, b ∈ R,
h(ab) = (ab) + I = (a+ I)(b+ I) = h(a)h(b).

Theorem 2.3. Let R and S be a commutative rings, and let h : R → S be a
ring homomorphism. Then

1. If J is an ideal in S, then h−1(J) is an ideal in R.

2. If h is onto and if I is an ideal in R, then h(I) is an ideal in S.

Proof. For part 1, suppose that J is an ideal in S. From group theory, we
already know that h−1(J) is a subgroup of R considered as an additive group,
so we only need to show that h−1(J) is closed under multiplication by any
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element of R. Let a ∈ h−1(J) and let r ∈ R. We must show that ar ∈ h−1(J).
Since a ∈ h−1(J), we have by definition that h(a) ∈ J . Also, we have h(r) ∈ S.
Since J is an ideal in S, it is closed under multiplication by any element of S,
so h(a)h(r) ∈ S. Since h(a)h(r) = h(ar), we have h(ar) ∈ S. By definition of
h−1(J), this means that ar ∈ h−1(J), which is what we wanted to show.

For part 2, suppose that h is onto and that I is an ideal in R. We already
know that h(I) is a subgroup of S considered as an additive group, so we only
need to show that h(I) is closed under multiplication by any element of S. Let
b ∈ h(I), and let s ∈ S. We must show that bs ∈ h(I). Since b ∈ h(I), we can
find a ∈ I such that b = h(a). Since h is onto, we can find r ∈ R such that
s = h(r). Since I is an ideal in R and a ∈ I and r ∈ R, we know that ar ∈ I .
It follows then that h(ar) ∈ h(I). Since h(ar) = h(a)h(r) = bs, this means that
bs ∈ h(I), which is what we wanted to show.

It should be no surprise that an important example of ring homomorphism
is the map h : Z → Zn given by h(a) = a mod n for all a ∈ Z. The kernel of
this homomorphism is the set of all integers that are evenly divisible by n. This
set is an ideal and so is closed under multiplication by any element of Z. This
can be seen directly, of course: If a is evenly divisible by n and k ∈ Z, then ka
is also evenly divisible by n.

In the context of rings, it is natural to denote the ideal of integral multiples
of n as nZ, with the meaning nZ = {nk | k ∈ Z}. This ideal is generated by n in
a certain sense, and it will be useful to have a name for an ideal that is generated
by a single element in a similar sense. Such an ideal is called a principal ideal.

Definition 2.5. Let R be a commutative ring and let a ∈ R. We define the
principal ideal generated by a to be the set aR = {ar | r ∈ R}.

The proof of the fact that aR is an ideal is left as an exercise. Note that
aR is the smallest ideal in R that contains a in the sense that any ideal I in
R that contains a must satisfy aR ⊆ I . This is clear since I is closed under
multiplication by any element of R: Since a ∈ I , we must have ar ∈ I for every
r ∈ R. Principal ideals will play an important role in the next chapter.

We will find a smaller variety of ideals when looking at the other common
examples of rings, Q, R, and C. These rings are fields, and the following theorem
will imply that fields don’t have very many ideals.

Theorem 2.4. Let R be a commutative ring with identity and let I be an ideal
in R. Let u ∈ R be a unit. (That is, u has a multiplicative inverse u−1.) If
u ∈ I, then I = R. In particular I is a proper ideal if and only if 1 6∈ I.
Furthermore, for any a ∈ R, the principal ideal aR is equal to R if and only if
a is a unit.

Proof. Let u be a unit in R, and let I be an ideal in R that contains u. Since
u ∈ I and I is an ideal, we also have ur ∈ I for any r ∈ R. Taking r = u−1,
we get that uu−1 ∈ I . That is, 1 ∈ I . So, any ideal that contains a unit also
contains 1. We show that the only ideal that contains 1 is all of R.
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Let I be an ideal that contains 1. Certainly, I ⊆ R, so to show that I = R,
it is sufficient to show that R ⊆ I . Let r ∈ R. Since I is an ideal, we know
that ar ∈ I for any a ∈ I . Since 1 ∈ I , we can take a = 1, giving 1r ∈ I . Since
1r = r, this means r ∈ I . So, R ⊆ I .

We have shown that a proper ideal does not contain 1. Conversely, of course,
if an ideal does not contain 1, then it is by definition proper. So, an ideal in a
commutative ring with identity is proper if and only if it does not contain 1.

To prove the last assertion of the theorem, let a be any element of R. If a is a
unit, then aR is an ideal that contains a unit, so by the first part of the theorem
aR = R. Conversely, suppose that aR = R. Then, in particular, 1 ∈ aR, which
means that there is some b ∈ R with 1 = ab. This means b is a multiplicative
inverse for a, and therefor that a is a unit.

Since every non-zero element in a field is a unit, this theorem shows that
a field has no non-trivial, proper ideals. This means that if F is a field and
h : F → R is a ring homomorphism, the kernel of h must be either {0} or all of
F . That is, either h maps everything in F to 0, or F is one-to-one.

Fields do play an interesting role as images of ring homomorphisms. To see
why, we need to look at maximal ideals.

Definition 2.6. Let R be a commutative ring. A maximal ideal M in R is a
proper ideal that is not contained in any larger proper ideal. Equivalently, M
is a maximal ideal if it is a proper ideal and for any ideal I such that M ⊆ I , it
must be the case that either I = M or I = R.

Thus, for a maximal ideal M in a ring R, there is no ideal I that lies strictly
between M and R in the sense that M  I  R. For example, in a field F , the
trivial ideal {0} is a maximal ideal: Since {0} and F are the only ideals in F ,
there are no ideals that lie strictly between {0} and F . Perhaps this fact hints
at the following important theorem:

Theorem 2.5. Let R be a commutative ring with identity. Let I be a proper
ideal in R. Then I is a maximal ideal in R if and only if the quotient ring R/I
is a field.

Proof. The proof will use the homomorphism h : R → R/I defined by h(a) =
a + I for a ∈ R. Note that this homomorphism is onto, so we can apply both
parts of Theorem 2.3.

Suppose that I is a maximal ideal in R. We must show that R/I is a
field. That is, we must show that every non-zero element a + I in R/I has a
multiplicative inverse. Let a + I be a non-zero element of R/I . Consider the
principal ideal J generated by a+ I in R/I , and let J = h−1(J). By Theorem
2.3, J is an ideal in R. J certainly contains I (since 0 ∈ J and I = h−1(0)).
Since I is a maximal ideal in R, we must have either J = I or J = R. We know
that a ∈ J , and we know that a 6∈ I since h(a) = a+ I is a non-zero element in
R/I . This means J 6= I . So, we must have J = R. This can only happen if J is
all of R/I . That is, the principal ideal generated by a + I in R/I is the entire
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ring R/I . By the previous theorem, a+ I must be a unit in R/I , which is what
we wanted to show.

Conversely, suppose that the quotient ring R/I is a field. Suppose that J
is an ideal in R such that I ⊆ J ⊆ R. To show that I is maximal, we must
show that J can only be I or R. Let K = h(J). Note that h−1(K) = J . By
Theorem 2.3, K is an ideal in R/I . Since R/I is a field, K can only be {0}
or all of R/I . If K = {0}, then J = h−1(K) = h−1(0) = I . If K = R/I
then J = h−1(R/I) = R. So we have that J is either I or J , as we wanted to
show.

Exercises

1. Let R be a commutative ring. Show that the intersection of two ideals in R is an
ideal.

2. Let R be a commutative ring and let I be an ideal in R. Show that the multipli-
cation on R/I that was specified in the definition of R/I is well-defined.

3. Let R be a commutative ring and let I be an ideal in R. Show that if R has
multiplicative identity 1, then 1 + I is a multiplicative identity in R/I.

4. Deleted. [The problem origianally listed here was incorrect.]

5. Suppose that D and E are integral domains, and suppose that h : D → E is a ring
homomorphism that maps D onto E. Show that h(1) = 1 (where the 1 on the
left means the identity in D and the 1 on the right is the identity in E). (Hint:
Consider h(1 · 1).

6. Let R be a commutative ring and let a ∈ R. Show that the principal ideal aR is in
fact an ideal by showing that it is closed under addition and under multiplication
by any element of R.

7. Let n be an integer greater than or equal to 2. Show that the principal ideal nZ in
Z is a maximal ideal if and only if n is a prime number. (Note in particular that
a ring can have many different maximal ideals.)

8. Consider the principal ideal 6Z in Z. Find two different ideals I in Z that satisfy
6Z  I  Z.

9. Show that every ideal in Z is a principal ideal. (Not all rings have this property.
A ring in which it is true is called a principal ideal domain .)

10. Consider two principal ideals aZ and bZ in Z. Find the intersection aZ ∩ bZ.
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Chapter 3

Polynomials

One significant factor behind the development of abstract algebra was
the effort to find roots of polynomials. The quadratic equation for the roots
of a second-degree polynomial was known since ancient times, and formulas for
third and fourth-degree polynomials were discovered in modern times. No one,
however, was able to find a formula for the roots of a fifth-degree polynomial.
One of the major achievements of abstract algebra was the proof—by Evariste
Galois in the 1830s—that no such formula is possible. We are not even close to
being able to cover this work, but we are in a position to prove an interesting
theorem about the existence of roots of polynomials. You are familiar with
polynomials in which the coefficients are real numbers. In fact, we can consider
polynomials with coefficients in any commutative ring. The basic definitions
carry over from the familiar case.

Definition 3.1. Let R be a commutative ring. We define the ring of poly-
nomials with coefficients in R to be the set of all polynomials of the
form a0 + a1x + a2x

2 + · · · + anx
n, where n is a non-negative integer and

a0, a1, . . . , an ∈ R. Such polynomials are added and multiplied in the usual
way, and under these operations, they form a ring. We denote this ring as R[x].
If p(x) is the polynomial a0 + a1x+ a2x

2 + · · ·+ anx
n, and if an 6= 0, then n is

called the degree of p(x). Note that by this definition, a constant polynomial
p(x) = a, for a ∈ R with a 6= 0 has degree zero. We will also consider the
constant polynomial p(x) = 0 to have degree 0.

It is assumed that you know what is meant by saying that “polynomials
are added and multiplied in the usual way.” R[x] is in fact a commutative
ring in which the additive identity is the constant polynomial 0. If R has a
multiplicative identity, 1, then the constant polynomial 1 is a multiplicative
identity in R[x]. Also note that we can consider R to be a subring of the
polynomial ring R[x] if we identify each a ∈ R with the constant polynomial
with value a.

Note that if p(x) = a0 +a1x+a2x
2 + · · ·+anx

n and q(x) = b0 +b1x+b2x
2 +

· · ·+ bmx
m, then the highest order term in the product p(x)q(x) is anbmx

n+m.

11
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In the general case of a ring R that contains zero-divisors, anbm can be zero
even if an 6= 0 and bn 6= 0. This is very different from familiar polynomials and
leads to other undesirable consequences. So we will restrict our discussion to
integral domains. (Recall that an integral domain is a commutative ring with
identity and no zero-divisors.)

Let D be an integral domain. Let p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n and
q(x) = b0 + b1x+ b2x

2 + · · ·+ bmx
m be non-zero polynomials in D[x] of degree n

and m respectively. That is, an 6= 0 and bm 6= 0. Since D is an integral domain,
it follows that anbm 6= 0, and therefor that the product p(x)q(x) is a non-zero
polynomial of degree m + n. So, the polynomial ring D[x] is also an integral
domain. We state this as a theorem:

Theorem 3.1. Let D be an integral domain. Then the polynomial ring D[x] is
also an integral domain. In particular, if F is a field, then F [x] is an integral
domain (but not a field).

It follows that the polynomial rings Z[x], Q[x], R[x], C[x], and Zp[x] for a
prime number p are integral domains.

You might remember that you can do long division with polynomials and
find quotients and remainders in much the same way that you do with integers.
The ability to write “b = qa + r” in the case of integers was a very powerful
tool. The same is true for polynomials with coefficients in a field. The proof
amounts, basically, to doing the long division. (We need the coefficients to lie
in a field F so that we can divide by non-zero elements of F . The theorem is
stated here without proof. If you want to see a proof, you can find one on pages
286–287 in our textbook.)

Theorem 3.2. (The Division Algorithm for Polynomials) Let F be a field. Let
b(x) and a(x) be polynomials in F [x]. Then there exist unique polynomials q(x)
and r(x) that satisfy: b(x) = q(x)a(x) + r(x), and either r(x) = 0 or the degree
of r(x) is less than the degree of a(x).

In the case of p(x) ∈ F [x], where F is a field, we can use the division
algorithm to prove the analog of a basic fact of elementary algebra: a is a root
of p(x) if and only if x− a is a factor of p(x). See the exercises. We need some
obvious definitions:

Definition 3.2. Let R be a ring, and let p(x) ∈ R[x]. Write p(x) = a0 + a1x+
a2x

2 + · · ·+anxn. For b ∈ R, we define the value of p(x) at b to be the element
p(b) of R defined by p(b) = a0 + a1b + a2b

2 + · · · + anb
n. In the case where

p(b) = 0, we say that b is a root of p(x) in R.

Using the division algorithm, we can also prove a fundamental fact about
the ring of polynomials with coefficients in a field: Every ideal in such a ring is
a principal ideal.

Theorem 3.3. Let F be a field. Let I be an ideal in the polynomial ring F [x].
Then I is a principal ideal. That is, there is a polynomial p(x) ∈ F [x] such that
I = p(x) · F [x] = {p(x)q(x) | q(x) ∈ F [x]}.
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Proof. Let a(x) be a non-zero element of I that has minimal degree among all
non-zero elements of I . We show that I is the principal ideal generated by a(x).
Certainly, a(x) ·F [x] ⊆ I , since a(x) ∈ I and I is closed under multiplication by
arbitrary elements of F [x]. We only need to show that I ⊆ a(x) ·F [x]. Let b(x)
be an arbitrary element of I . We want to show that b(x) = a(x)q(x) for some
q(x) ∈ F [x]. From the division algorithm, we know that b(x) = a(x)q(x)+r(x),
for some q(x), r(x) ∈ F [x] where r(x) is either zero or has degree less than the
degree of a(x). But then r(x) = b(x) − a(x)q(x). Since a(x) and b(x) are in
the ideal I and q(x) ∈ F [x], r(x) ∈ I by closure of I under addition and under
multiplication by an arbitrary element of F [x]. Since a(x) has minimal degree
among non-zero elements of I , and r(x) ∈ I , this means that the degree of r(x)
cannot be less than the degree of a(x). The only alternative is r(x) = 0. So in
fact, b(x) = a(x)q(x), as we wanted to show.

A ring in which every ideal is a principal ideal is called a principal ideal
domain, so we have shown that for a field F , F [x] is a principal ideal domain.
It is interesting to consider the maximal ideals in F [x]. These are just ideals
that are generated by irreducible polynomials.

Definition 3.3. Let F be a field, and let p(x) ∈ F [x]. p(x) is said to be
irreducible over F if it has degree greater than 0 and if it cannot be written
as a product p(x) = a(x)b(x) where a(x) and b(x) are polynomials in F [x] of
lower degree than p(x).

For example, the polynomial x2 + 1 is irreducible over R, but it is reducible
over C since it can be written in the form x2 + 1 = (x − i)(x + i). Similarly,
x2 − 2 is irreducible over Q but reducible over R.

Theorem 3.4. Let F be a field and let I be an ideal in the polynomial ring
F [x]. Then I is a maximal ideal in F [x] if and only if I is a principal ideal
I = p(x) · F [x], where p(x) is an irreducible polynomial over F .

Proof. Suppose that I is a maximal ideal. We know from the previous theorem
that I = p(x) · F [x] for some p(x) ∈ F [x]. We know from the proof of that
theorem that p(x) has minimal degree among all the elements of I . We only
need to show that p(x) is irreducible. Suppose not. Then p(x) = a(x)b(x)
for some polynomials a(x) and b(x) of lower degree than p(x). Consider the
principal ideal J = a(x) · F [x]. By Exercise 4, I  J . Now, a(x) cannot be a
constant polynomial, since its degree is equal to the degree of p(x) minus the
degree of b(x). Since every element of J has degree greater than or equal to the
degree of a(x), J is a proper ideal. We have shown that I  J  F [x]. But
this contradicts the fact that I is a maximal ideal. From this contradiction, we
conclude that p(x) is irreducible.

Conversely, suppose that I = p(x) · F [x], where p(x) is an irreducible poly-
nomial over F . We want to show that I is maximal. Suppose not. Then there is
an ideal J in F [x] such that I  J  F [x]. Since every ideal in F [x] is principal,
J = b(x) · F [x] for some b[x] ∈ F [x]. Since p(x) ∈ I ⊆ J = b[x] · F [x], we must
have p(x) = b(x)a(x) for some a(x) ∈ F [x]. Now, a(x) can’t be zero, since p(x)
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is not. Also, a(x) cannot be a non-zero constant a(x) = a, since if it were we
would have b(x) = a−1p(x), which would imply I = J . This means that both
a(x) and b(x) must be polynomials of lower degree than b(x). But that means
that p(x) is not irreducible over F . This contradiction shows that I must be
maximal.

We also know from the previous chapter that an ideal I in F [x] is maximal
if and only if F [x]/I is a field. Let p(x) be an irreducible polynomial over F .
Let E be the quotient ring F [x]/(p(x) · F [x]). Since p(x) · F [x] is a maximal
ideal in F [x], E is also a field. Furthermore, the field E contains an isomorphic
copy of F in a natural way (identifying a ∈ F with the coset a + (p(x) · F [x])
in F [x]/(p(x) · F [x])). We consider F to be a subfield of E and say that E
is an extension field of F . Since F ⊆ E, we can consider p(x) to be a
polynomial over E. The punch line to this whole excursion into the theory
of polynomial rings is the fact that p(x) has a root in E. That is, given an
irreducible polynomial p(x) over a field F , we have constructed an extension
field E of F in which p(x) has a root.

Theorem 3.5. Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial
over F . Let E be the field F [x]/(p(x) · F [x]), and let φ : F [x] → E be the
homomorphism that maps g(x) ∈ F [x] to the coset g(x)+(p(x) ·F [x]) in E. Let
a = φ(x). Then a is a root of p(x) in E.

Proof. p(a) = p(φ(x)) = φ(p(x)) = 0

As an example of this theorem, consider the polynomial x2 + 1, which is an
irreducible polynomial over R. By the theorem, x2 + 1 has a root in the field
R[x]/((x2 + 1) · R[x]). It can be shown that this field is in fact isomorphic to
the field of complex numbers C. So, we have found a roundabout but elegant
construction for the complex numbers in which they arise out of a general con-
struction that works for manufacturing a root for any irreducible polynomial
over any field.

Exercises

1. Let D be an integral domain. What are the units in the polynomial ring D[x] ?

2. Let F be a field and let p(x) be a polynomial with coefficients in F . Let a ∈ F .
Show that the remainder when p(x) is divided by the polynomial x − a is the
constant polynomial with value p(a). Deduce that a is a root of p(x) if and only
if p(x) = (x− a)q(x) for some q(x) ∈ F [x].

3. Let F be a field. Show that a polynomial p(x) ∈ F [x] of degree 2 is irreducible if
and only if it has no root in F .

4. Let F be a field. Let p(x) ∈ F [x]. Suppose that p(x) = a(x)b(x) where a(x) and
b(x) are polynomials in F [x] of lower degree than F [x]. Show that the principal
ideal p(x) · F [x] is a proper subset of the principal ideal a(x) · F [x].

5. Let F be a field and let p(x) be any polynomial of degree greater than zero in F [x].
Prove that there is an extension field of F in which p(x) has a root. (Note that
p(x) is not assumed to be irreducible!)


