The second test for this course will be given in class on Wednesday, October 26. It will cover Chapters 5, 6, 7, and 8 from the textbook. Of course, you need to know the material from earlier chapters, but there will be no questions specifically directed at that material. In addition, Chapter 7 is really just background material on functions; there will be no questions about abstract functions as such, but there might be questions about functions as they relate to group theory such as proving that a group-theoretical function is one-to-one and/or onto.

There will be some proofs on the test, but they will be proofs that are reasonably straightforward and that should not require a lot of thought, as long as you know the material. There will be some short answer questions to test your knowledge of definitions and theorems. And there will be a few computational questions, such as finding the order of a permutation or. It is possible that there will be a longer essay-type question.

Here are some important things you should know about:

Subgroup

Proving that a subset is a subgroup

Z(G), the center of a group G

Z(g), the centralizer of an element g in a group G

Subgroups of $GL(2,\mathbb{R})$: upper triangular matrices; $SL(2,\mathbb{R})$

The intersection of subgroups is a subgroup

The union of two subgroups, $H \cup K$, is a subgroup if and only if $H \subseteq K$ or $K \subseteq H$

Every subgroup of a cyclic group is cyclic

If $G = \langle x \rangle$ is a finite cyclic group, and H is a subgroup, then |H| divides |G|

If $G = \langle x \rangle$ is a finite cyclic group, then G has a unique subgroup for every divisor of |G|

If $G = \langle x \rangle$ is a finite cyclic group of order n, and $k \in \mathbb{Z}^+$, then $\langle x^k \rangle = \langle x^{\gcd(n,k)} \rangle$

Finding all subgroups of \mathbb{Z}_n

The Euler phi-function $\phi(n)$

The number of elements of order d in a finite cyclic group of order n is 0 if $d \nmid n$ and is $\phi(d)$ if $d \mid n$.

Direct product of groups

If G_1, G_2, \ldots, G_n are any groups and $(g_1, g_2, \ldots, g_n) \in G_1 \times G_2 \times \cdots \times G_n$ then $o((g_1, g_2, \ldots, g_n)) = \infty$ iff $o(g_i) = \infty$ for some i

If G_1, G_2, \ldots, G_n are any groups and $(g_1, g_2, \ldots, g_n) \in G_1 \times G_2 \times \cdots \times G_n$ where each $o(g_i) < \infty$, then $o((g_1, g_2, \ldots, g_n)) = \operatorname{lcm}(o(g_1), o(g_2), \ldots, o(g_n))$

If G_1, G_2, \ldots, G_n are cyclic groups, then $G_1 \times G_2 \times \cdots \times G_n$ is cyclic iff $\gcd(|G_i|, |G_j|) = 1$ for all $i \neq j$

 $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ is cyclic iff $\gcd(n_i, n_j) = 1$ for all $i \neq j$

Every element of $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ has order that divides $o((1,1,\ldots,1))$

 $G_1 \times G_2 \times \cdots \times G_n$ is abelian iff G_i is abelian for all i

One-to-one function

Onto function

Bijection

Inverse function

Permutation of a set X

The symmetric group (S_X, \circ) of permutations of X under the operation of function composition

The identity function, as the identity of the group S_X

The group S_n , equal to S_X where $X = \{1, 2, 3, \dots n\}$

Tableau notation for permutations in S_n

Computing products in S_n

Cycle; length of a cycle

For a cycle $\alpha = (x_1, x_2, \dots, x_r), o(\alpha) = r$

Every permutation can be written as a product of disjoint cycles of length ≥ 2 , in a unique way up to order

Disjoint cycles commute

If
$$\alpha_1, \alpha_2, \ldots, \alpha_k$$
 are disjoint cycles, then $o(\alpha_1 \alpha_2 \cdots \alpha_k) = \operatorname{lcm}(o(\alpha_1), o(\alpha_2), \ldots, o(\alpha_k))$

Every permutation can be written as a product of transpositions

Even and odd permutations

Lemma: The identity permutation cannot be written as a product of an odd number of transpositions

No permutation can be both even and odd; the proof of this fact from the Lemma

The alternating group A_n

$$|S_n| = n!$$
 and $|A_n| = \frac{n!}{2}$

 A_4 is isomorphic to the group of rotational symmetries of the tetrahedron

The dihedral group D_n as a subgroup of S_n

The generators f and g of D_n

$$D_n = \{e, f, f^2, \dots, f^{n-1}, g, gf, gf^2, \dots, gf^{n-1}\}\$$