This homework is due Friday, September 12

- 1. Use the Cauchy-Riemann equations to decide whether each of the following polynomials is analytic. If it is analytic, find a complex polynomial Q(z) such P(x,y) = Q(x+iy).
 - a) $P_1(x,y) = (x^3 3xy^2) + i(y^3 3x^2y)$
 - **b)** $P_2(x,y) = (x^4 + y^4 6x^2y^2) + i(4x^3y 4xy^3)$
 - c) $P_3(x,y) = (x 2x^2 + 2y^2) + i(y 4xy)$
- **2.** Suppose that f(z) is a complex-valued function defined on a subset S of \mathbb{C} . Let $z_o \in S$. Write a careful proof that the following are equivalent:
 - a) For any sequence z_1, z_2, z_3, \ldots of points in S, if z_n converges to z_o , then $f(z_n)$ converges to $f(z_o)$.
 - b) For any $\varepsilon > 0$, there is a $\delta > 0$ such that for any $z \in S$, if $|z z_o| < \delta$ then $|f(z) f(z_o)| < \varepsilon$.
- **3.** Suppose that X and Y are connected subsets of $\mathbb C$ and that $X \cap Y$ is not empty. Show that $X \cup Y$ is connected (using the definition of connected set).
- **4.** Suppose that $\{a^n\}$ is a sequence of non-negative real numbers and that $\overline{\lim}_{n\to\infty} a_n = L$, where $L < \infty$.
 - a) Show that $\{a_n\}$ has a subsequence that converges to L.
 - b) Suppose that M > L. Can $\{a_n\}$ have a subsequence that converges to M? Find an example or show that no example exists.
 - c) Suppose that M < L. Can $\{a_n\}$ have a subsequence that converges to M? Find an example or show that no example exists.

(Note: A subsequence of a_1, a_2, a_3, \ldots is a sequence $a_{n_1}, a_{n_2}, a_{n_3}, \ldots$ where $n_1 < n_2 < n_3 \cdots$. A subsequence can often be defined inductively; that is, given the first N terms of the subsequence, show how to find the $(N+1)^{\text{st}}$ term.)

5. Suppose that f(z) is a complex-valued function defined on a neighborhood of $a \in \mathbb{C}$. Suppose that f is differentiable at a, and that $f'(a) \neq 0$. Let $g(z) = f(\overline{z})$. Note that $g(\overline{a}) = f(\overline{a}) = f(a)$ and that g is defined on a neighborhood of \overline{a} . Show that g is **not** differentiable at \overline{a} , using the definition of the derivative.