LAB Week 12

MATH 130 Section 2
April 18, 2019
Covering Sections 4.1-4.4 ’ , . Your Name (Print): _ ANSWER KEY

1. Sketch the graph of a function f that is continuous on [~3,4] and- has the following properties: critical numbers at
z = —1 and x = 2, a local minimum at £ = ~1, but no local extrema at z = 2.

2. Sketch the graph of a function g that has a local minimum and a local makimum, but does not have an absolute
minimum nor an-absolute maximum. .
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8. Let f(:c) ot

(a) Find the intervals on which f is increasing and decreasing.
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(b) Find all local maximum and minimum values of f (be sure to state whether they are minimum or
maximum), if they exist.

Bre First Derivahive Test ooeove,

As can be seen Yrem

£ has a local wimiwmiuw  at (o"‘%) .

- "
Flo) = -



(¢) Find all intervals on which f is concave up
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ANSWERS not  SowuTions

5. Section 4.4 is the culmination of a lot of the material we have been studying so far this semester. We are now able
to put together pieces of information about a function to graph it. Your reading assignment for Wednesday asked that you
compile all the information into a table. Here is a question that uses that information. There will be a question similar to
this on the exam next week! You will certainly need another piece of paper to do this question!

Let f(x) = —ZQ—TI

State both coordinates for all requested points.

(a) Find the domain of f. Use interval notation to state your solution.
(~o2, °0)

(b) Find all & and y intercepts. Label which is which,

y - Intercept . (o,
% - interceplt ! (1 ,0)

(c) Find all horizontal asymptotes. State the asymptotes explicitly. If no horizontal asymptotes exist, explain why.
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(d) Find all vertical asymptotes and related information. State the asymptotes explicitly. If no vertical asymptotes exist,
explain why.
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(e) Find all intervals on which f is increasing or decreasing.
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(f) Find all local extrema, if they exist. (Recall that you need to include z and y values so that you can plot them on your
graph.) If no local extrema exist, explain why.
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(g) Find all intervals on which f is concave up or down. (Note: It is ok if your numbers are complicated! Leave in exact
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(h) Find all points of inflection, if they exist. (Recall that you need to include = and y values so that you can plot them
on your graph.) If no inflection points exist, explain why.

& (138 ,130) and (~0.28,0.63)



graph of f(z) using the above information. Label clearly (coordinates,

(i) Plot points, sketch asymptotes and sketch the
e scale before you start drawing. That is, choose a scale that will make

asymptote names, etc.). Think carefully about th
the graph’s features clear.
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