Evaluating the Continuity of a Function

Find the interval(s) on which $k(x)=|\ln x|$ is continuous.

Solution: Let $f(x)=|x|$ and $g(x)=\ln x$. Then $k(x)=(f \circ g)(x)$.
Note that $f(x)$ is a piecewise function so we must check each of its pieces in addition to the point where the pieces join, separately for continuity.

If $x<0$, then $|x|=-x$ is a polynomial. Hence we know f is continuous on $(-\infty, 0)$, since polynomials are continuous everywhere by Theorem 2.10.

Similarly, if $x \geq 0$, then $|x|=x$ is also a polynomial and so f is continuous on $(0, \infty)$, again by Theorem 2.10.

Next we must show that f is continuous at zero. To do this, we will check the left and right hand limits of f as x approaches zero.
$\lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=0 \quad$ and $\quad \lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0$
Since these limits are equal, $\lim _{x \rightarrow 0}|x|=0=f(0)$ and so f is also continuous at zero, and therefore continuous everywhere.

Since g is a transcendental function, by Theorem $2.15 g$ is continuous on its domain, which is $(0, \infty)$.

Since f is continuous everywhere, by Theorem 2.11, $k(x)$ is continuous everywhere g is continuous, that is, at all $g(a)$ where a is in $(0, \infty)$.

Thus since g is continuous on $(0, \infty)$, and f is continuous for all $g(a)$, their composition, $(f \circ g)(x)$ is also continuous on $(0, \infty)$, and thus the interval of continuity is $(0, \infty)$.

