Finding Surface Area

MATH 131: Calculus II, Sections 2 and 3

What happens when we take a curve y = f(x) and rotate it about a line? We form a surface of revolution, like the outer shell of a solid of revolution. What is the area of this surface? Let's figure it out!

Consider the following curve y = f(x) on the interval [a, b].

Note that this is a bit confusing because we are considering distinct x values. So let's use another old friend, the Intermediate Value Theorem!

By the Intermediate Value Theorem, there exists	in	such that
The slant height is equal to the	which is equal to	
Thus adding all the frustum surface areas together we get		
Giving us that the surface area is $SA =$		