Finding Surface Area

MATH 131: Calculus II, Sections 2 and 3

What happens when we take a curve $y=f(x)$ and rotate it about a line? We form a surface of revolution, like the outer shell of a solid of revolution. What is the area of this surface? Let's figure it out!

Consider the following curve $y=f(x)$ on the interval $[a, b]$.

Our first step is, as usual, to \qquad

Then, as in Section 6.5, we estimate the curve with \qquad

Illustrate the two steps above on the graph.

Next we rotate the \qquad about the x-axis to form bands. These bands look like part of a cone and are called frustums.

The surface area of a frustum $=2 \pi\left(\right.$ average radius)(slant height) $=2 \pi\left(\frac{r_{1}+r_{2}}{2}\right) l$.

Ok, so if we have the interval $\left[x_{i-1}, x_{i}\right]$, the average radius of the frustum on that interval is \qquad

Note that this is a bit confusing because we are considering distinct x values. So let's use another old friend, the Intermediate Value Theorem!

By the Intermediate Value Theorem, there exists \qquad in \qquad such that

The slant height is equal to the \qquad which is equal to \qquad

Thus adding all the frustum surface areas together we get \qquad

Giving us that the surface area is $S A=$

