Taylor Polynomial Example MATH 131: Calculus II, Section 2 December 7, 2018

Consider the function $f(x) = e^{\frac{x}{2}}$.

- (a) Determine the degree three Taylor polynomial, p_3 , for f centered at a = 0.
- (b) Use your work in (a) to determine a general order n Taylor polynomial, p_n for f.
- (c) Use p_3 to approximate a value for $e^{0.2}$.

SOLUTION:

By definition, $p_n(x) =$

Find the derivatives of f(x) and evaluate them at 0.

f(x) =	and so $f(0) =$
f'(x) =	and so $f'(0) =$
$f^{\prime\prime}(x) =$	and so $f''(0) =$
$f^{\prime\prime\prime}(x) =$	and so $f^{\prime\prime\prime}(0) =$
÷	÷
$f^{(k)}(x) =$	and so $f^{(k)}(0) =$

Thus:

 $p_1(x) =$ $p_2(x) =$ $p_3(x) =$

 \vdots $p_n(x) =$

Now $f(x) = e^{\frac{x}{2}}$, so what is x if we are trying to find $e^{0.2}$?