Taylor Polynomial Example

MATH 131: Calculus II, Section 2
December 7, 2018

Consider the function $f(x)=e^{\frac{x}{2}}$.
(a) Determine the degree three Taylor polynomial, p_{3}, for f centered at $a=0$.
(b) Use your work in (a) to determine a general order n Taylor polynomial, p_{n} for f.
(c) Use p_{3} to approximate a value for $e^{0.2}$.

SOLUTION:

By definition, $p_{n}(x)=$

Find the derivatives of $f(x)$ and evaluate them at 0 .

$$
\begin{array}{cc}
f(x)= & \text { and so } f(0)= \\
f^{\prime}(x)= & \text { and so } f^{\prime}(0)= \\
f^{\prime \prime}(x)= & \text { and so } f^{\prime \prime}(0)= \\
f^{\prime \prime \prime}(x)= & \text { and so } f^{\prime \prime \prime}(0)= \\
\vdots & \\
f^{(k)}(x)= & \text { and so } f^{(k)}(0)=
\end{array}
$$

Thus:

$$
\begin{aligned}
& p_{1}(x)= \\
& p_{2}(x)= \\
& p_{3}(x)=
\end{aligned}
$$

$$
p_{n}(x)=
$$

Now $f(x)=e^{\frac{x}{2}}$, so what is x if we are trying to find $e^{0.2}$?

