Chapter 1 Theorems and Facts

MATH 204: Linear Algebra

THEOREMS:

Theorem 1: Uniqueness of Reduced Row-Echelon Form Theorem:
Each matrix is row equivalent to one and only one reduced echelon matrix.

Theorem 2: Existence and Uniqueness of Solutions Theorem:
A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column. That is, if and only if an echelon form of the matrix does not have a row of the form:

$$
\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & b
\end{array}\right], \text { with } b \neq 0
$$

If the linear system is consistent, then the solution set contains either (i) a unique solution when there are no free variables, or (ii) infinitely many solutions when there is at least one free variable.

Theorem 2.5: Properties of Scalar Multiplication and Vector Addition:
(see page 27 for the appropriate commutative, associative, distributive, etc. properties)

Theorem 3: Equivalent Representations Theorem:

Summary: $A \mathbf{x}=\mathbf{b}$ is the same as a vector equation and is solved using the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$.

Corollary to Theorem 3:

$A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A (if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$). (Note that this becomes a part of the Connections Theorem later!)

Theorem 4: The Connections Theorem:
Let A be an $m \times n$ matrix. Then the following statements are logically equivalent:

1. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
3. The columns of $A \operatorname{span} \mathbb{R}^{m}$.
4. A has a pivot position in every row.

Theorem 5: Properties (Linearity) of Matrix-Vector Multiplication Theorem: see page 39

Theorem 6: Solution Sets of Nonhomogeneous Systems in Relation to Homogeneous Solutions Theorem:
see page 47

Theorem 7: Characterization of Linearly Dependent Sets Theorem:
see page 59

Theorem 8: Surplus of Vectors Theorem:
see page 60

Theorem 9: Dependence of Sets Containing the Zero Vector Theorem:
see page 60

FACTS:

Fact 1: Linear Systems with Row Equivalent Matrices Fact:
If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Facts 2 a and b: One Pivot Per Row (Column):
Each row contains at most one pivot. (Each column contains at most one pivot.)

Fact 3: Nontrivial Homogeneous Solutions Fact:

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

Fact 4: Independence of Matrix Columns Fact:

The columns of a matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Fact 5: Linear Independence of Sets of Two Vectors Fact:
A set of two vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right.$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

