Homework Week 12

MATH 204: Linear Algebra Due November 17, 2017 by 1:55pm

Name (Print):

Remember that although you may discuss this assignment with others, your write up should be your own. Do not share your write-up, look at other's write-ups, discuss word for word how something should be proved, etc. Be sure to note with whom you collaborate if you do collaborate.

1. Find a basis for the subspace of M_{22} spanned by the matrices

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}.$$

(Hint: Since we add and scalar multiply matrices just like we do with vectors in \mathbb{R}^n , we can think of matrices in M_{22} as vectors in \mathbb{R}^4 by listing all of the matrix entries vertically in a column. Now you can solve the problem in \mathbb{R}^4 and convert the answer back to matrices! Cool!)

2. Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 3 & 6 & 4 & 3 & 1 \\ 4 & 8 & 5 & 5 & 5 \\ 7 & 12 & 7 & 7 & 7 \end{bmatrix}$$
.

- (a) Find a basis for Nul A.
- (b) Find a basis for Col A.

3. Recall that \mathbb{P}_2 is the set of all polynomials of degree less than or equal to two. Define a linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\vec{p}) = \begin{bmatrix} \vec{p}(0) \\ \vec{p}(0) \end{bmatrix}$.

- (a) Determine the kernel of T. Write it explicitly as a spanning set.
- (b) Determine the range of T. Is T onto?
- 4. State clearly whether each statement is true or false, then justify your answer.
 - (a) The set of all polynomials \vec{p} in \mathbb{P}_3 satisfying $\vec{p}(0) = 1$ is a subspace of \mathbb{P}_3 .

(b) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then Col $A = \mathbb{R}^3$.

- (c) The matrices $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ form a linearly independent set in M_{22} . (Hint: Use the hint from exercise 1!)
- 5. Prove the following Theorem: Suppose V and W are vector spaces and $T:V\to W$ is a one-to-one linear transformation. If $\{T(\vec{u}_1),T(\vec{u}_2),\ldots,T(\vec{u}_n)\}$ is linearly dependent, then $\{\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_n\}$ is linearly dependent. (This theorem together with Theorem 8 on page 221 tells us why the procedure in Example 6 works! Hint for the proof: Make sure you use your hypotheses!)