Homework Week 3

MATH 204: Linear Algebra Due September 15, 2017

Name (Print):

Remember that although you may discuss this assignment with others, your write up should be your own. Do not share your write-up, look at other's write-ups, discuss word for word how something should be proved, etc. Be sure to note with whom you collaborate if you do collaborate.

- 1. Curve Fitting Application: Find the unique quadratic equation of the form $y = ax^2 + bx + c$ that goes through the points (-2, 20), (1, 5) and (3, 5) in the xy-plane. (Hint: Create a system of equations with unknowns/variables a, b and c.) Isn't that cool!
- 2. Consider the set $H = \left\{ \begin{bmatrix} 4 \\ -4 \\ 2 \end{bmatrix}, \begin{bmatrix} -8 \\ 7 \\ -1 \end{bmatrix}, \begin{bmatrix} 8 \\ -6 \\ -2 \end{bmatrix} \right\}$. Is the vector $\begin{bmatrix} -32 \\ 4 \\ -7 \end{bmatrix}$ in Span(H)? If it is, write it as a specific linear combination of the vectors in H. If it is not, explain.
- 3. Consider the set $H = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\3\\-2 \end{bmatrix}, \begin{bmatrix} -6\\7\\-5 \end{bmatrix} \right\}$. Is the vector $\begin{bmatrix} 11\\-5\\9 \end{bmatrix}$ in Span(H)? If it is, write it as a specific linear combination of the vectors in H. If it is not, explain.
- 4. Number 21 from Section 1.3, page 33. Your explanation should include reference to a Theorem to justify!
- 5. Number 26 from Section 1.3, page 33. Be sure to think about the questions and do not perform unnecessary calculations.
- 6. Number 12 from Section 1.4, page 41. Check your solution!
- 7. Number 14 from Section 1.4, page 41. Show your solution!
- 8. Ignore the instructions for this one! Instead, use the given A and \mathbf{b} and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ has a solution. (Your description should be in the form of an equation involving b_1 , b_2 and b_3 .) Also, give a specific example of a \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does **not** have a solution, along with a few words of explanation. Number 16 from Section 1.4, page 41.
- 9. Find the value(s) of h for which $\mathbf{v} = \begin{bmatrix} -3 \\ h \\ -5 \\ 5 \end{bmatrix}$ is in Span $\left\{ \begin{bmatrix} -3 \\ -4 \\ 5 \\ -5 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -4 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -3 \end{bmatrix} \right\}$. Show your work.