Matrix Operations

	ATH 204: Linear Algebra epare for class October 3, 2018	Name (Print):
Af	ter reading Section 2.1 (pages 94-102), work through th	e following ideas.
1.	1. Suppose A is an $m \times n$ matrix.	
	(a) What does $a_{i,j}$ represent?	
	(b) Make a list of the diagonal entries of A .	
	(c) What is a diagonal matrix? Give an example of a	diagonal matrix if $m = n = 4$.
	(d) Draw what A looks like if A is a zero matrix with	m = 5 and $n = 2$.
2.	What does it mean to say that matrix A is equal to matrix	atrix B ?
	State Theorem 2.1: Basic Matrix Algebra for Scalar M s say matrices have (i.e. can you name them)?	ultiplication and Addition. What properties does

4.	Complete the first two parts of Section 2.1 exercise 1 on page 102. That is, compute $-2A$ and $B-2A$
5.	State the definition of matrix multiplication.
	•
6.	State the Product of Matrices and Linear Combinations of Columns Fact from page 97.

7.	Using the matrices for Section 2.1 exercise 1 on page 102, compute AC or explain why it cannot be done?
8.	Again, use the matrices for Section 2.1 exercise 1 on page 102 to answer the following.
	(a) Compute CD using the row-column rule.
	(b) Illustrating the Fact you quoted in question 6, show that the first column of CD is a linear combination of the columns of C .

	(c) Compute DC using the row-column rule.
	(d) What does now made about the short matrix models like the 2 Harris this different than and
	(d) What does your work above tell us about matrix multiplication? How is this different than real number multiplication?
Q.	State Theorem 2.2: Basic Matrix Algebra for Multiplication of Matrices.
0.	Source Theorem 2.2. Basic Matthe Higgsha for Mattephoation of Matthews