Collected Homework Week 8

MATH 278: Number Theory
Due March 9, 2015 at 4:00pm
Name (Print):

1. Exercise 2.22 on page 34 .
2. Exercise 2.23 on page 34 .
3. Prove the following: There are arbitrarily long sequences of non-primes. That is, for any $n \in \mathbb{N}$ there exists a sequence of n consecutive integers, none of which is prime. (Hint: You may find factorials useful here. Try to construct a such a sequence!)
4. If p_{n} denotes the nth prime number, let $d_{n}=p_{n+1}-p_{n}$. An open question is whether the equation $d_{n}=d_{n+1}$ has infinitely many solutions. Interpret what this question is asking into words and then give five solutions. Be sure to briefly explain/show why what you have found are solutions. Note that your handout that lists lots of primes will be useful here!
5. Prove Theorem 2.18 on page 33 .

Notebook Problems Week 8

(1) Prove Theorem 2.13 on page 32.
(2) Prove that if n is a natural number such that $n>2$, then there exists a prime p satisfying $n<p<n$!.

