Collected Homework Week 11

MATH 278: Number Theory
Name (Print):
Due: April 8, 2015 at 4:00pm

1. Let's experiment a bit! Imagine you are a professional research mathematician and you are looking for a good statement to prove. Determine the residue of $(n-1)$! modulo n for $n=3$ through $n=12$. From your results, come up with a conjecture. You do not need to prove your conjecture (for me...but perhaps for your profession!), but check to see if it works with two more examples.
2.

(a)Prove or disprove: $S=\left\{0,1,2,2^{2}, 2^{3}, \ldots, 2^{9}\right\}$ forms a complete residue system modulo 11 .
(b)Prove or disprove: $S=\left\{0,1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}\right\}$ forms a complete residue system modulo 7 .
(c)Prove or disprove: $S=\left\{0,1,3,3^{2}, 3^{3}, 3^{4}, 3^{5}\right\}$ forms a complete residue system modulo 7 .
(d) Reflect on your work in parts (a)-(c). Briefly write about your reflections and make some observations and/or conjectures.
3. Prove that if $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ is a complete residue system modulo n, then for any integer c, $T=\left\{c+a_{1}, c+a_{2}, c+a_{3}, \ldots, c+a_{n}\right\}$ is also a complete residue system modulo n.
4. Find all solutions to $24 x \equiv 12(\bmod 66)$. Be sure to show your work.

Notebook Problems Week 11

1. Prove that if $(a, n)=1$, then for any integer b the set $S=\{b, b+a, b+2 a, b+3 a, \ldots, b+(n-1) a\}$ will form a complete residue system modulo n.
2. If p is prime and $a^{2} \equiv 1(\bmod p)$, prove that $a \equiv \pm 1(\bmod p)$.
