MATH 278: Number Theory Due: May 5, 2015 at 4:00pm

Name (Print): ______ Free Extension: May 6, 2015 at 4:00pm

1. The Euler- ϕ Function

- (a) Using the results from Justine's presentation (or pages 79-81 in our text), determine $\phi(77)$.
- (b) Use the information from (a) to evaluate $2^{100000} \pmod{77}$.

2. Wilson's Theorem

- (a) Find a k such that $15! \equiv k \pmod{17}$.
- (b) Find a k such that $2(26)! \equiv k \pmod{29}$.
- (c) Show that $18! \equiv -1 \pmod{437}$.
- 3. Prove that every odd prime divisor of $n^2 + 1$ is of the form 4k + 1. (Hint: Use order to help you.)