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Abstract

A graph G is said to be well-covered if every maximal independent set
of G is of the same size. It has been shown that characterizing well-
covered graphs is a co-NP-complete problem. In an effort to charac-
terize some of these graphs the author has focused on well-dominated
graphs, a class of graphs Finbow, Hartnell and Nowakowski have
proved to be a subclass of the well-covered graphs. A set of vertices
D is said to be a dominating set of a graph G if every vertex in G is
either in D or adjacent to a vertex in D. A graph is well-dominated if
every minimal dominating set is minimum. In an attempt to charac-
terize well-dominated graphs that are 3-connected, planar, and claw-
free, the author was able to extend the result to a characterization of
all well-covered graphs with these three properties. In this paper we
will describe this characterization and outline the arguments of the
proof. The full details may be found at http://math.hws.edu/eking.

In this paper, assume any graph G = (V,E) is a finite simple graph with
vertex set V and edge set E. The notation u ∼ v denotes that vertices u and
v are adjacent, while u � v denotes that they are not. The independence
number of G, denoted α(G), is defined as the maximum cardinality of all
independent sets of G. We say that a graph is well-covered if every maximal
independent set of G has the same cardinality. Determining whether or not
a graph is well-covered has been shown to be co-NP-complete [2] [7].

A dominating set D ⊆ V of G is a set such that each vertex v ∈ V is
either in the set or adjacent to a vertex in the set. The domination number
of G, denoted γ(G), is defined as the minimum cardinality of a dominating
set of G. Note that γ(G) ≤ α(G) for all graphs G, since any maximal
independent set is a minimal dominating set. A graph is well-dominated if
every minimal dominating set of G has the same cardinality. The following,
proved by Finbow, Hartnell and Nowakowski relates the properties of being
well-covered and well-dominated.

Lemma 1 [4]: Every well-dominated graph is well-covered.

The author’s original goal was to characterize all planar, 3-connected,
claw-free, well-dominated graphs. Realizing that her arguments could be
generalized, she characterized all planar, 3-connected, claw-free, well-covered



graphs and concluded that nearly all of them are also well-dominated. Since
the proof is too long to be printed here, this paper outlines the proof. The
full details can be found at http://math.hws.edu/eking.

The following lemma, due to Campbell and Plummer [1], is an important
tool in proving the characterization theorems.

Lemma 2 [1]: Let G be a well-covered graph and I be an independent set
of G. If C is a component of G−N [I], then C is well-covered.

The proof of the theorem characterizing planar, 3-connected, claw-free,
well-covered graphs is broken down into subcases determined by the possible
degree of a given vertex. The following theorem is vital in narrowing down
possible subcases.

Theorem 3 [6]: If G is 3-connected, claw-free and planar, then
(a) d(v) ≤ 6 for all v ∈ V (G), and
(b) if v has degree 6 in G, then v lies on at least two separating triangles.

Given this theorem, there are only a finite number of possibilities for
the degree of a vertex in a graph G that is 3-connected, claw-free, planar
and well-covered. Considering all possibilities for the degree of a vertex v,
we will explore the graph by proceeding from v and stopping regularly to
check that all of the hypotheses still hold. Usually we will be considering
only a portion of G (that portion to which we have “traveled” and can
“see”). Let a semi-known subgraph S of G be an induced subgraph of G on
the vertices for which we have complete adjacency information at a given
time in the argument, union the other vertices and edges to which we have
traveled but about which have only partial information. Vertices for which
we have only partial adjacency information may be adjacent to other such
vertices or to vertices to which we have not yet traveled. These vertices for
which we have partial adjacency information are said to have the ability
to grow, and a set of vertices can grow if any of the vertices in the set can
grow.

The proof makes extensive use of Lemma 2. Often an independent set I
of vertices in the semi-known subgraph S is chosen in such a way that there
is a component of S − N [I] that is not well-covered. By Lemma 2, there
cannot be such a component remaining when we delete an independent set
from a well-covered graph G, and thus there must be a vertex of S that
can grow. The following lemma describes the different possibilities for the
growth of S.

Lemma 4: Let G be a well-covered graph and S be a semi-known subgraph
of G. Suppose that I is an independent set of vertices of S and C is a
component of S −N [I]. If C is not well-covered, then either



(i) there is an edge, e 6∈ E(S), in G between two vertices of I, i.e. I is
dependent,

or (ii) there is an edge, e 6∈ E(S), in G between two vertices of C,
or (iii) there is an edge, e 6∈ E(S), in G between a vertex of I and a vertex

of C,
or (iv) there is an edge, e 6∈ E(S), in G between a vertex of C and a vertex

of V (G)− V (C)− I that is not adjacent to any vertex in I.

Proof: Assume the hypotheses of the lemma hold. Suppose by way of
contradiction that C is not well-covered and none of (i), (ii), (iii), or (iv)
hold. Since (i) does not hold, I is an independent set of G. Since (ii) and
(iii) do not hold, C is a subgraph of G − N [I]. Since (iv) does not hold,
C is not a proper subgraph of any larger connected subgraph of G−N [I].
Thus C is a component of G−N [I]. By Lemma 2, G is not well-covered, a
contradiction. Therefore at least one of (i), (ii), (iii), or (iv) must hold.

The following term is used when the fourth possibility of Lemma 4
occurs. Let S be a semi-known subgraph of a graph G, I be a set of
vertices in S that is independent in G, and C be a component of S −N [I]
that is not well-covered. Then any vertex v of G − S that is adjacent to
a vertex of C is said to be born by the deletion of N [I]. Thus we also say
that v is not adjacent to any vertices of I by birth.

The following lemma will be very useful in eliminating possible subcases
from the proof.

Lemma 5: Let G be a planar, claw-free, 3-connected graph, and S be a
semi-known subgraph of G. Suppose there exists a set I ⊆ V (S) that is
independent in G, and a component, C, of S −N [I] consisting of a vertex,
v, and a subset of its neighbors such that: (i) v cannot grow, and (ii) there
are at least two neighbors of v in C that cannot grow and are independent
from one another. Then G is not well-covered.

Proof: Let S be a semi-known subgraph of G. Let I be a set of vertices
such that I ⊆ V (S) and I is independent in G, where S − N [I] has a
component C containing a vertex v, which cannot grow, and a subset of
the neighbors of v. Let v1 and v2 be neighbors of v in C, such that v1 � v2

and v1 and v2 cannot grow. Since v cannot grow, all the adjacencies of v
in G are known and so I ∪ {v} is independent in G. Extend I ∪ {v} to a
maximal independent set of G; call it J . Let T = J − {v}. Note that since
C is a component of S − N [I], there are no edges between the vertex set
{v, v1, v2} and vertices of T . Thus T ∪ {v1, v2} is also independent in G.
If this set is maximal independent in G, call it J ′; otherwise extend it to
a maximal independent set J ′ in G. Then |J ′| ≥ |J | + 1 and so G is not
well-covered.



Define G to be the class of graphs containing K4, and those graphs
formed by a collection of K4’s drawn in the plane and connected by edges
joining exterior vertices of these K4’s in such a way that G is 3-connected,
plane and has the following property: if an exterior vertex of a K4 is joined
to two vertices u and w on two other K4’s, then u ∼ w.

In Figures 6-8 where semi-known graphs are illustrated, a vertex for
which only partial adjacency information is known is signified by showing
dotted lines extending from the vertex to the unknown parts of G.

Theorem 6: Let G be a planar, 3-connected graph. Then G is claw-free
and well-covered if and only if G is one of the exceptional graphs in Figure
1 or Figure 2, or G is in the class G.

Outline of Proof of Theorem 6:

Note that some claims are not proved here and others are only outlined.
Please see the aforementioned website for full details.

Claim 6/1: If G is one of the exceptional graphs in Figure 1 or Figure 2
or G is in the class G, then G is planar, 3-connected, claw-free and well-
covered.

Proof of Claim 6/1: It is left to the reader to check that the graphs in
Figures 1 and 2 are planar, 3-connected, claw-free and well-covered. Clearly
K4 is planar, 3-connected, claw-free and well-covered. So suppose that G
is a graph the class G that is not K4. By definition of G, G is planar and
3-connected.

Suppose, by way of contradiction, that G contains a claw at v, a vertex
of G, with vertices u, w and x. Then each of u, w and x are adjacent to v,
but {u,w, x} is an independent set. Since any two vertices within the same
K4 must be adjacent and there exists a claw at v, exactly two of {u, w, x}
must be neighbors of v from outside the K4 to which v belongs, and these
neighbors must be in distinct K4’s. Suppose u is the vertex in the K4 to
which v belongs, and w and x are neighbors in other K4’s. But then by
definition of G, if v is joined to two vertices w and x in two other K4’s,
then w ∼ x. Thus there is no claw at v. Hence G is claw-free.

Finally, we must show that G is well-covered. Clearly, any maximal
independent set of G may contain at most one vertex from each K4. By
planarity and 3-connectivity, there is one vertex from each K4 that is not
connected to any other K4’s. Thus every maximal independent set of G
must contain exactly one vertex from each K4. Therefore every maximal
independent set has the same cardinality, and therefore G is well-covered.

Thus if G is one of the exceptional graphs in Figure 1 or Figure 2
or G is in the class G, then G is planar, 3-connected, claw-free and
well-covered.
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Figure 1: Exceptional well-covered, claw-free, planar, 3-connected graphs
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Figure 2: More exceptional well-covered, claw-free, planar, 3-connected
graphs
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Figure 3: The local structure for a semi-known subgraph with d(v) = 6.

Claim 6/2: If G is planar, 3-connected, claw-free and well-covered, then
G is one of the exceptional graphs in Figure 1 or Figure 2, or G is in the
class G.

Outline of Proof of Claim 6/2: Suppose that G is planar, 3-connected,
claw-free and well-covered.

Claim 6/2.1: If G has a vertex of degree six, then G is one of the first two
exceptional graphs in Figure 1.

Outline of Proof of Claim 6/2.1: Let v be a vertex of G such that
d(v) = 6. Label the neighbors of v in clockwise order: u, w, x, y, z, and
t. By Theorem 3, v must lie on at least two separating triangles, and so
without loss of generality, assume that u ∼ x and y ∼ t. Then by claw-
freedom, w ∼ u, w ∼ x, z ∼ y and z ∼ t. Note that the induced subgraph
S on {u, v, w, x, y, z, t} is not well-covered, since {v} and {z, w} are both
maximal independent sets of S. Therefore, S must not be all of G and
at least one vertex of S must grow. By 3-connectivity, the four triangular
faces having v as a corner vertex contain no additional vertices in G.

Claim 6/2.1.1: There must be at least two disjoint edges between the
vertex sets {u, x}, and {t, y}, and there are no vertices in the exterior face,
that is, the uxyt-face.

By Claim 6/2.1.1, we may assume we have the semi-known subgraph
S shown in Figure 3. Note that this graph is not well-covered. The only
additional edges that we can have between known vertices are uy or xt. By
planarity, we cannot have both of these edges, so without loss of generality,
suppose the only possible additional edge between known vertices is uy.
Even if we add this edge, the resulting graph is not well-covered. Thus a
vertex of S must grow into either the uwx-face or the yzt-face. Without
loss of generality, suppose either u, w or x is adjacent to a new vertex
in the uwx-face. By 3-connectivity, if one of u, w or x is adjacent to an



additional vertex in the uwx-face then each of u, w and x is adjacent to
an additional vertex in the uwx-face. Hence u is adjacent to an additional
vertex in the uwx-face; call it s. To prevent {t, w, s} and {t, x, s} from
forming claws with u, we must have that w ∼ s and x ∼ s. This graph,
with or without the additional edge uy is well-covered, and thus we have
the first two exceptional graphs shown in Figure 1.

The following Claim shows that G cannot contain any additional vertices
and so must be one of these two graphs.

Claim 6/2.1.2: The graph G must contain exactly eight vertices.

Outline of Proof of Claim 6/2.1.2: Above it was shown that G cannot
contain fewer than eight vertices. We now argue that no more vertices
may be added to the first two graphs in Figure 1 to obtain larger well-
covered graphs containing a vertex of degree six. Let S be a semi-known
subgraph of G and one of the first two graphs in Figure 1. Suppose, by
way of contradiction, we can add vertices to S to form a larger planar,
3-connected, claw-free, well-covered graph. By claw-freedom, there are no
additional vertices in the usx-face; otherwise by 3-connectivity u would
have an additional neighbor in this face and there would be a claw at u
with t, w and the additional neighbor of u. Recall by Claim 6/2.1.1, there
are no vertices in the exterior face. Thus, any additional vertices must
be in either the yzt-face, the uws-face, or in the xws-face. Note that by
3-connectivity, if there exists an additional vertex in one of these faces all
three vertices that make up the corners of this face must have a neighbor
inside the face. Thus there cannot be additional vertices in both the uws-
face and the xws-face, or v together with an additional neighbor of w from
each of these faces forms a claw at w. If the edge uy is not in our graph, the
uws-face is symmetric to the xws-face. If the edge uy is in our graph, then
u already has six neighbors and so by Theorem 3 cannot have any neighbors
in the uws-face. Thus without loss of generality, we may suppose that any
additional vertex must be either in the yzt-face or in the xws-face, and no
additional neighbors are in the uws-face.

First it is proven that no additional vertex may be in the xws-face.
This is shown by proving that such vertices would need to be in the form of
345-nests described by Plummer [6], and then by showing that if the graph
has such a configuration in the xws-face then it is not well-covered. Then
it is proven that no additional vertices may be in the yzt-face.

Hence the graph G, containing a vertex of degree six, must have exactly
eight vertices.

Therefore if G has a vertex of degree six, then G is one of the first two
exceptional graphs in Figure 1.
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Figure 4: Three forbidden subgraphs containing a vertex of degree five.

The following claim will be useful.

Claim 6/2.2: Let G be a 3-connected, claw-free, plane graph, with the
property that d(v) ≤ 5 for all v in G. Suppose v is a vertex of G that is
interior to a 3-cycle, where v is adjacent to all three of the vertices on the
boundary of this cycle, and one of the boundary vertices has degree five (or
degree four and cannot grow) such that two (or one) of its neighbors are
not adjacent to v and the other boundary vertices. Then v cannot grow
and d(v) = 3.

Proof of Claim 6/2.2: Suppose G and v fulfill the hypotheses of the claim.
Let u, w and x be the boundary vertices of the cycle, such that each of u, w
and x is adjacent to v, and without loss of generality, suppose d(u) = 5 (or
d(u) = 4 and u cannot grow). Then the two neighbors (or one neighbor)
of u that are not adjacent to v or the other boundary vertices are exterior
to the uwx-cycle by 3-connectivity. There can be no additional vertices in
either the uvw-face or the uvx-face; otherwise {v, w} or {v, x} respectively
would be 2-cuts, separating the additional vertices from the rest of the
graph and contradicting the fact that G is 3-connected. Suppose there is
an additional vertex in the vwx-cycle. Then by 3-connectivity, each of v,
w and x must have a neighbor interior to this cycle. Thus w cannot have
an additional neighbor exterior to the uwx-cycle; otherwise this additional
exterior neighbor together with u and the additional neighbor in the vwx-
cycle would be a claw at w, contradicting the fact that G is claw-free. But
then {u, x} is a 2-cut, separating v and w from the rest of the graph and
contradicting the fact that G is 3-connected. Hence there is no vertex in
the vwx-face either. Therefore v cannot grow and has d(v) = 3.

The remainder of the proof has several kinds of arguments that are re-
peatedly used with slight modifications. The author will outline the proof
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Figure 5: The only members of G containing a forbidden subgraph shown
in Figure 4(b).

and give the reader an in-depth look at one particular subcase that high-
lights the main types of arguments. Again, the reader may find the full
details at http://math.hws.edu/eking.

Claim 6/2.3: If G is not one of the exceptional graphs in Figure 1 or
Figure 2, and G is not one of the graphs of G in Figure 5, then the graphs
shown in Figure 4 are forbidden subgraphs of the graph G.

Claim 6/2.4: If G is not one of the exceptional graphs in Figure 1 or
Figure 2, then every vertex of G must lie on a K4.

Outline of Proof of Claim 6/2.4: Suppose that G is not one of the
exceptional graphs in Figure 1 or Figure 2. Let v be a vertex of G. By
Theorem 3 and Claim 6/2.1, d(v) < 6. Since G is 3-connected, d(v) ≥ 3.
Thus we must show that if 3 ≤ d(v) ≤ 5, then v lies on a K4.

Claim 6/2.4.1: If G is not one of the exceptional graphs in Figure 1 and
v is a vertex of G with d(v) = 5, then v must lie on a K4.

Claim 6/2.4.2: If G is not one of the exceptional graphs in Figure 1 or
Figure 2 and v is a vertex of G with d(v) = 4, then v must lie on a K4.

Outline of Proof of Claim 6/2.4.2: Let G be a graph and v be a vertex
of G that fulfill the hypotheses of the claim. Label the neighbors of v in a
clockwise fashion: u, x, y, w. Suppose, by way of contradiction, that v does
not lie on a K4. By claw-freedom, and without loss of generality, we may
assume that x ∼ y and u ∼ w. We call this subgraph, the bow-tie subgraph
centered at v. Since G is 3-connected, every vertex of G has degree at least
three. Thus x must grow. Either x is adjacent to u, x is adjacent to w or
x is adjacent to an additional vertex.

Claim 6/2.4.2.1: The vertex x is not adjacent to u.

Outline of Proof of Claim 6/2.4.2.1: Suppose, by way of contradiction,
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Figure 6: Proving that every vertex of degree four must lie on a K4.

that x ∼ u. Then x � w and u � y; otherwise v would lie on a K4. Thus
either x is adjacent to an additional vertex or d(x) = 3. Suppose that x
is adjacent to an additional vertex; call it z. To prevent {xu, xy, xz} from
forming a claw at x, either z ∼ u or z ∼ y.

Claim 6/2.4.2.1.1: The vertex z is not adjacent to u.

Claim 6/2.4.2.1.2: The vertex z is not adjacent to y.

Outline of Proof of Claim 6/2.4.2.1.2: Suppose, by way of contradic-
tion, that z ∼ y. Either x is adjacent to an additional vertex or d(x) = 4.

Suppose x is adjacent to an additional vertex; call it t. To prevent
{xv, xt, xz} from forming a claw at x, we must have t ∼ z. To prevent
{xt, xu, xy} from forming a claw at x, either t is adjacent to u or t is
adjacent to y. Recall u � y since v does not lie on a K4. Suppose t ∼ u.
Then t must be exterior to the xyz-face, and we have the forbidden 5-wheel
shown in Figure 4(c) centered at x. Thus t � u. Suppose t ∼ y. Then
we have the forbidden subgraph shown in Figure 4(b) centered at x. Thus
t � y, and therefore x is not adjacent to an additional vertex.

Suppose d(x) = 4. Then either u is adjacent to an additional vertex or
d(u) = 3.

Claim 6/2.4.2.1.2.1: The vertex u is not adjacent to an additional vertex.

Claim 6/2.4.2.1.2.2: The vertex u must be adjacent to an additional
vertex.

Proof of Claim 6/2.4.2.1.2.2: Suppose, by way of contradiction, that u
is not adjacent to an additional vertex and so d(u) = 3. Either y is adjacent
to an additional vertex, or d(y) = 3.

Suppose y is adjacent to an additional vertex; call it t. To prevent
{yv, yz, yt} from forming a claw at y, we must have z ∼ t. (See Figure
6 for an illustration.) Call this semi-known subgraph S. Let C be the



component of S − N [t] containing u, so that V (C) = {u, v, w, x}. Then
C is not well-covered, since {u} and {w, x} are both maximal independent
sets of C. Thus by Lemma 4, either w is adjacent to t, or w is adjacent to
an additional vertex. (Note that w � x since we are assuming that v is not
in a K4 and d(x) = 4.)

Suppose w ∼ t. Then this semi-known subgraph of G is isomorphic to
the exceptional well-covered graph shown in Figure 2(e). Since G is not a
graph from Figure 2, this subgraph must grow. If w ∼ y, then we have
the forbidden subgraph shown in Figure 4(c) centered at y. Thus we may
assume w � y. Suppose y is adjacent to an additional vertex; call it s.
Then to prevent {yv, yz, ys} and {yv, yt, ys} from forming claws at y, we
must have z ∼ s and t ∼ s. Thus s is in the zyt-face by planarity. But then
we have the forbidden subgraph shown in Figure 4(b) centered at y. Thus
y is not adjacent to an additional vertex. Hence since w � y and y is not
adjacent to an additional vertex, y cannot grow and d(y) = 4. Note that if
z is adjacent to an additional vertex, then t must also be adjacent to that
vertex by claw-freedom at z. Thus, since the graph must grow, either w is
adjacent to z, or t is adjacent to an additional vertex.

Suppose w ∼ z. Then this semi-known subgraph of G is isomorphic
to the exceptional well-covered graph shown in Figure 2(c). Since G is
not a graph from Figure 2, this subgraph must grow. Since there are no
additional edges between known vertices, w, z or t must be adjacent to an
additional vertex. Note that by claw-freedom at w, if w is adjacent to an
additional vertex, then t must be adjacent to that vertex as well. Similarly,
if z is adjacent to an additional vertex, then t must be adjacent to that
vertex as well. Hence since the graph must grow, t must be adjacent to an
additional vertex; call it s. To prevent {ty, ts, tw} from forming a claw at
t, we must have s ∼ w. To prevent {wu, wz,ws} from forming a claw at
w, we must have s ∼ z. But then we have the forbidden subgraph shown
in Figure 4(b) centered at z. Thus w � z.

Suppose t is adjacent to an additional vertex; call it s. To prevent
{ty, ts, tw} from forming a claw at t, we must have s ∼ w. Call this semi-
known subgraph S. Let C be the component of S − N [s] containing x,
so that V (C) = {u, v, x, y, z}. Then every vertex of C − x is adjacent to
x, vertices x, u and y cannot grow, and u � y. Thus by Lemma 5, G is
not well-covered, a contradiction. Thus t is not adjacent to an additional
vertex, and therefore, w � t.

Suppose w is adjacent to an additional vertex; call it s. (See Figure
7(a) for an illustration.) Call this semi-known subgraph S. Let C be the
component of S −N [y] containing w, so that V (C) = {u,w, s}. Then C is
not well-covered since {w} and {u, s} are both maximal independent sets
of C. Note that since s � t by birth, s � y by claw-freedom at y. Thus by
Lemma 4, either w is adjacent to y, w is adjacent to an additional vertex,
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Figure 7: Proving that every vertex of degree four must lie on a K4.

or s is adjacent to an additional vertex.
Suppose w ∼ y. But then {yt, yw, yx} is a claw at y since x cannot

grow and w � t by the preceding case, which contradicts the fact that G is
claw-free. Hence w � y.

Suppose w is adjacent to an additional vertex; call it r. To prevent
{wv, ws, wr} from forming a claw at w, we must have s ∼ r. Call this
semi-known subgraph S. Let C be the component of S −N [y] containing
w, so that V (C) = {u,w, s, r}. Then C is not well-covered since {w} and
{u, s} are both maximal independent sets of C. Thus by Lemma 4, either
w is adjacent to an additional vertex, r is adjacent to an additional vertex,
or s is adjacent to an additional vertex.

Suppose w is adjacent to an additional vertex; call it q. To prevent
{wv, ws, wq} and {wv, wr,wq} from forming claws at w, we must have
s ∼ q and r ∼ q. Now d(w) = 5, and either q is interior to the wrs-face, r
is interior to the wsq-face, or s is interior to the wrq-face. By Claim 6/2.2,
whichever vertex is interior cannot grow and has degree three. Call this
semi-known subgraph S. Let C be the component of S −N [y] containing
w, so that V (C) = {u,w, s, r, q}. Then every vertex of C−w is adjacent to
w, vertices w, u, and one of s, r and q, cannot grow, and u is not adjacent to
any of s, r, or q. Thus by Lemma 5, G is not well-covered, a contradiction.
Hence w is not adjacent to an additional vertex (as a fifth neighbor), and
thus there are no additional vertices in the wrs-face by 3-connectivity.

Suppose r is adjacent to an additional vertex; call it q. Call this semi-
known subgraph S. Let C be the component of S−N [y, q] containing w, so
that V (C) = {u,w, s}. Then C is not well-covered since {w} and {u, s} are
both maximal independent sets of C. Note that y � q by birth, and since
s � t by birth, s � y by claw-freedom at y. Also since w � t by a previous
subcase (of the y adjacent to an additional vertex subcase, a subcase among
the subcases of Claim 6/2.4.2.1.2.2), w � y by claw-freedom at y. Thus by
Lemma 4, either q is adjacent to s, or s is adjacent to an additional vertex.

Suppose q ∼ s. Call this semi-known subgraph S. Let C be the com-



ponent of S −N [t, q] containing u, so that V (C) = {u, v, w, x}. Then C is
not well-covered since {u} and {w, x} are both maximal independent sets
of C. Note that C cannot grow. Thus by Lemma 4, q must be adjacent
to t. Since G is 3-connected, {w, t} is not a 2-cut, and so there must be
a path from y and z to the vertex set {q, r, s} that does not pass through
w or t. Note that r and q are not adjacent to y by birth, and since s � t
by birth, s � z by claw-freedom at z. Thus either r is adjacent to z, q is
adjacent to z, or z is adjacent to an additional vertex in the ztqrwux-face.
Suppose r ∼ z. To prevent {zx, zt, zr} from forming a claw at z, we must
have r ∼ t. But then {rw, rq, rz} is a claw at r, since w cannot grow and
q � z by planarity. Thus r � z. Suppose q ∼ z. (See Figure 7(b) for an
illustration.) Call this semi-known subgraph S. Let C be the component
of S −N [q] containing v, so that V (C) = {u, v, w, x, y}. Then every vertex
of C − v is adjacent to v, vertices v, w and x cannot grow, and w � x.
Thus by Lemma 5, G is not well-covered, a contradiction. Hence q � z.
Suppose z is adjacent to an additional vertex in the ztqrwux-face; call it
p. To prevent {zx, zt, zp} from forming a claw at z, we must have t ∼ p.
To prevent {tp, ty, tq} from forming a claw at t, we must have p ∼ q. Call
this semi-known subgraph S. Let C be the component of S −N [p, s] con-
taining v, so that V (C) = {u, v, x, y}. Then C is not well-covered since {v}
and {u, y} are both maximal independent sets of C. Note that p � s by
planarity. Thus by Lemma 4, y must be adjacent to an additional vertex;
call it n. To prevent {yv, yz, yn} and {yv, yt, yn} from forming claws at y,
we must have z ∼ n and t ∼ n. Hence n must be in the yzt-face. But then
we have the forbidden subgraph shown in Figure 4(b) centered at y. Thus
z is not adjacent to an additional vertex, and hence q � s.

Suppose s is adjacent to an additional vertex; call it p. Call this semi-
known subgraph S. Let C be the component of S − N [p, q, t] containing
v, so that V (C) = {u, v, w, x}. Then C is not well-covered since {v} and
{w, x} are both maximal independent sets of C. Note that p � q by birth,
and C cannot grow. Thus by Lemma 4, either q is adjacent to t or p is
adjacent to t.

Suppose q ∼ t. (See Figure 8(a) for an illustration.) Call this semi-
known subgraph S. Let C be the component of S−N [q, s] containing x, so
that V (C) = {u, v, x, y, z}. Then C is not well-covered since {x} and {u, y}
are both maximal independent sets of C. Recall q � s by the preceding
subcase. Thus by Lemma 4, either q is adjacent to z, y is adjacent to an
additional vertex, or z is adjacent to an additional vertex. Suppose q ∼ z.
Call this semi-known subgraph S. Let C be the component of S −N [p, q]
containing v, so that V (C) = {u, v, w, x, y}. Then all the vertices of C − v
are adjacent to v, vertices v, w and x cannot grow, and w � x. Thus by
Lemma 5, G is not well-covered, a contradiction. Hence q � z. Suppose
y is adjacent to an additional vertex; call it n. To prevent {yv, yz, yn}
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Figure 8: Proving that every vertex of degree four must lie on a K4.

and {yv, yt, yn} from forming claws at y, we must have z ∼ n and t ∼ n.
Thus n must be in the yzt-face. But then we have the forbidden subgraph
shown in Figure 4(b) centered at y. Thus y is not adjacent to an additional
vertex, and by 3-connectivity there are no additional vertices in the yzt-
face. Suppose z is adjacent to an additional vertex; call it n. To prevent
{zx, zt, zn} from forming a claw at z, we must have t ∼ n. But then
{tn, ty, tq} is a claw at t, since n � q by birth. This contradicts the fact
that G is claw-free, and hence z is not adjacent to an additional vertex, so
q � t.

Suppose p ∼ t. Note that if y is adjacent to an additional vertex; call it
n, then to prevent {yv, yz, yn} and {yv, yt, yn} from forming claws at y, we
must have z ∼ n and t ∼ n. Thus n must be in the yzt-face. But then we
have the forbidden subgraph shown in Figure 4(b) centered at y. Thus y
is not adjacent to an additional vertex, and by 3-connectivity, there are no
additional vertices in the yzt-face. Call this semi-known subgraph S. Let C
be the component of S−N [p, r] containing x, so that V (C) = {u, v, x, y, z}.
Then all the vertices of C − x are adjacent to x, vertices x, u and y cannot
grow, and u � y. Note that since p � q by birth, p � r by claw-freedom at
r. Thus by Lemma 5, G is not well-covered, a contradiction. Hence p � t,
and so s is not adjacent to an additional vertex (when r is adjacent to an
additional vertex), and therefore r is not adjacent to an additional vertex.

Suppose s is adjacent to an additional vertex; call it q. Call this semi-
known subgraph S. Let C be the component of S −N [y, q] containing w,
so that V (C) = {u,w, r}. Then C is not well-covered since {w} and {u, s}
are both maximal independent sets of C. Note that q � y by birth, and
C cannot grow. Thus by Lemma 2, G is not well-covered, a contradiction.
Hence s is not adjacent to an additional vertex (when w is adjacent to an
additional vertex), and so w is not adjacent to an additional vertex.

Suppose s is adjacent to an additional vertex; call it r. Call this semi-
known subgraph S. Let C be the component of S − N [r, t] containing v,



so that V (C) = {u, v, w, x}. Then C is not well-covered since {v} and
{w, x} are both maximal independent sets of C. Note that C cannot grow.
Thus by Lemma 4, r is adjacent to t. (See Figure 8(b) for an illustration.)
Suppose y is adjacent to an additional vertex; call it q. Then to prevent
{yv, yz, yq} and {yv, yt, yq} from forming claws at y, we must have z ∼ q
and t ∼ q. Thus q must be in the yzt-face. But then we have the forbidden
subgraph shown in Figure 4(b) centered at y. Thus y is not adjacent to an
additional vertex, d(y) = 4, and by 3-connectivity, there are no additional
vertices in the yzt-face. Since G is 3-connected, {w, t} is not a 2-cut, and
so there must be a path from z to s and r that does not pass through either
w or t. Note that since s � t by birth, s � z by claw-freedom at z. Thus
either r is adjacent to z, or z is adjacent to an additional vertex.

Suppose r ∼ z. Call this semi-known subgraph S. Let C be the com-
ponent of S −N [r] containing v, so that V (C) = {u, v, w, x, y}. Then C is
not well-covered since {v} and {w, x} are both maximal independent sets
of C. Note that C cannot grow. Thus by Lemma 2, G is not well-covered,
a contradiction. Hence r � z.

Suppose z is adjacent to an additional vertex; call it q. To prevent
{zx, zt, zq} from forming a claw at z, we must have t ∼ q. Call this semi-
known subgraph S. Let C be the component of S−N [r, q] containing v, so
that V (C) = {u, v, w, x, y}. Then C is not well-covered since {v} and {w, x}
are both maximal independent sets of C. Note that C cannot grow. Thus by
Lemma 4, we must have q ∼ r. Call this semi-known subgraph S. Let C be
the component of S−N [s, q] containing v, so that V (C) = {u, v, x, y}. Then
C is not well-covered since {v} and {u, y} are both maximal independent
sets of C. Note that C cannot grow. Thus by Lemma 4, we must have q ∼ s.
Call this semi-known subgraph S. Let C be the component of S − N [q]
containing v, so that V (C) = {u, v, w, x, y}. Then C is not well-covered
since {v} and {u, y} are both maximal independent sets of C. Note that
C cannot grow. Thus by Lemma 2, G is not well-covered, a contradiction.
Hence z is not adjacent to an additional vertex and so s is not adjacent to
an additional vertex. Therefore w is not adjacent to an additional vertex,
and finally y is not adjacent to an additional vertex, which means d(y) = 3.

Suppose d(y) = 3. Since G is 3-connected and d(w) = 2, w must grow.
The only possible additional edge between w and other known vertices is
wz. Suppose w is adjacent to z. Then this semi-known subgraph of G
is isomorphic to the exceptional well-covered graph shown in Figure 1(l).
Since G is not a graph from Figure 1, this subgraph must grow. There are
no possible additional edges between known vertices, and so z or w must be
adjacent to an additional vertex. But then {w, z} is a 2-cut, contradicting
the fact that G is 3-connected. Hence w � z. Then w must be adjacent to
an additional vertex, but then {w, z} is a 2-cut, contradicting the fact that
G is 3-connected. Hence d(y) 6= 3. But this is a contradiction, since above



we showed that y must have degree three. Therefore d(u) 6= 3, u must be
adjacent to an additional vertex, and we have proved Claim 6/2.4.2.1.2.2.

By Claim 6/2.4.2.1.2.2, u must be adjacent to an additional vertex,
but by Claim 6/2.4.2.1.2.1 u must not be adjacent to an additional vertex.
Thus we have a contradiction and so we have proved Claim 6/2.4.2.1.2:
the vertex z is not adjacent to the vertex y. Claim 6/2.4.2.1.1 proves that
z � u. But then {xu, xy, xz} is a claw at x, contradicting the fact that G is
claw-free. (Recall that u � y since v is not contained in a K4.) Hence x is
not adjacent to an additional vertex and d(x) = 3. By symmetry, we may
also assume that d(u) = 3. The graph is not well-covered since {v} and
{u, y} are both maximal independent sets of the graph, thus the graph must
grow. If either w or y is adjacent to an additional vertex, then {w, y} is a
2-cut, separating u, v, and x from the rest of the graph, and contradicting
the fact that G is 3-connected. Thus there are no additional vertices. But
the only possible additional edge is wy, leaving us with a 4-wheel which is
not well-covered. Hence x � u, and we have proved Claim 6/2.4.2.1.

Similar arguments prove the following:

Claim 6/2.4.2.2: The vertex x is not adjacent to w.

Claim 6/2.4.2.3: The vertex x is not adjacent to an additional vertex.

Thus every vertex of degree four must lie on a K4.

Claim 6/2.4.3: If G is not one of the exceptional graphs in Figure 1 or
Figure 2 and v is a vertex of G with d(v) = 3, then v must lie on a K4.

By Theorem 3 and Claim 6/2.1, d(v) < 6. Hence since G is 3-connected,
we know that 3 ≤ d(v) ≤ 5 for all v in V (G). By Claim 6/2.4.1 we know
that every vertex of degree five must lie on a K4. By Claim 6/2.4.2 we
know that every vertex of degree four must lie on a K4. By Claim 6/2.4.3
we know that every vertex of degree three must lie on a K4. Therefore we
have shown that if G is not one of the exceptional graphs in Figure 1 or
Figure 2, then every vertex of G must lie on a K4, and so we have proved
Claim 6/2.4.

Claim 6/2.5: If G is not one of the exceptional graphs in Figure 1 or
Figure 2, then any two K4’s in G must be disjoint.

Proof of Claim 6/2.5: Let G be a graph that fulfills the hypothesis of
the claim. Suppose, by way of contradiction, that there exist two K4’s,
K4(1) and K4(2), in G that are not disjoint. By planarity, these two K4’s
may share at most three vertices. Recall that by Theorem 3, d(v) ≤ 6 for
all v in V (G). Suppose K4(1) and K4(2) share exactly one vertex, v. Then
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Figure 9: Proving that any two K4’s of G are disjoint.

v must be adjacent to three vertices of K4(1) and three vertices of K4(2)
that are all distinct, since K4(1) and K4(2) share exactly one vertex. But
then d(v) = 6, and so by Claim 6/2.1, G must be the exceptional graph in
Figure 1(a) or Figure 1(b). This contradicts the fact that G is not a graph
in Figure 1, and so K4(1) and K4(2) cannot share exactly one vertex.

Suppose K4(1) and K4(2) share exactly two vertices, v and u. Since
v and u are in a K4 together, we know that v ∼ u. Let w and x be the
remaining two vertices of K4(1), such that w is interior to the uvx-face.
Let y and z be the remaining two vertices of K4(2), such that y is interior
to the uvz-face. (See Figure 9(a) for an illustration.) Now d(u) = d(v) = 5
and so by Claim 6/2.2, neither w nor y may grow. Since G is 3-connected,
{x, z} is not a 2-cut. Therefore G cannot contain any additional vertices,
and we must have x ∼ z. But then G is not well-covered, since {u} and
{w, y} are both maximal independent sets of G. Hence K4(1) and K4(2)
cannot share exactly two vertices.

Suppose K4(1) and K4(2) share exactly three vertices, v, u and w. Let
x be the fourth vertex of K4(1) and y be the fourth vertex of K4(2). (See
Figure 9(b) for an illustration.) Note that this semi-known subgraph of G is
not well-covered, since {u} and {x, y} are both maximal independent, and
so this subgraph must grow. Since G is 3-connected, {w, y} is not a 2-cut,
and so either u or v must be adjacent to an additional vertex. Without
loss of generality, suppose that u is adjacent to an additional vertex; call it
z. To prevent {ux, uy, uz} from forming a claw at u, we must have y ∼ z.
Now d(u) = 5, and so by Claim 6/2.2, x cannot grow and d(x) = 3. Since
G is 3-connected, {u, y} is not a 2-cut and so there must be a path from z
to w that does not pass through either u or y. Thus either w is adjacent to
z, or w is adjacent to an additional vertex in the exterior face.

Suppose w ∼ z. Then d(w) = 5, and so by Theorem 3 and Claim
6/2.1, w cannot grow. Thus there are no additional vertices in the vwy-
face; otherwise {v, y} would be a 2-cut, contradicting the fact that G is
3-connected. Furthermore, there are no additional vertices in the wyz-
face; otherwise {x, z} would be a 2-cut, contradicting the fact that G is



3-connected. Hence this semi-known subgraph of G cannot grow. But it is
not well-covered, since {u} and {x, z} are both maximal independent sets of
the graph. Therefore it cannot be a semi-known subgraph of G and w � z.

Suppose w is adjacent to an additional vertex in the exterior face; call
it t. To prevent {wx,wy, wt} from forming a claw at w, we must have
t ∼ y. To prevent {yv, yz, yt} from forming a claw at y, we must have
t ∼ z. Note that d(w) = d(y) = 5, and so by Theorem 3 and Claim 6/2.1,
w and y cannot grow. By Claim 6/2.4, z must lie on a K4. Since two of z’s
neighbors (u and y) cannot grow, z must then be adjacent to an additional
vertex; call it s. To prevent {zu, zt, zs} from forming a claw at z, we must
have t ∼ s. But then {z, t} is a 2-cut, separating s from the rest of the
graph and contradicting the fact that G is 3-connected. Therefore w is not
adjacent to an additional vertex.

Hence K4(1) and K4(2) cannot share exactly three vertices.
Therefore K4(1) and K4(2) share none of their vertices; that is any two

K4’s in G must be disjoint.

Claim 6/2.6: If an exterior vertex of a K4 is joined to two vertices u and
w on two other K4’s, then u ∼ w.

Proof of Claim 6/2.6: Let v be an exterior vertex of a K4 in G that is
adjacent to two vertices u and w on two other K4’s. Suppose, by way of
contradiction, that u � w. Let x be the interior vertex of v’s K4. Then
{vx, vu, vw} is a claw at v, contradicting the fact that G is claw-free. Thus
if an exterior vertex of a K4 is joined to two vertices u and w on two other
K4’s, then u ∼ w.

If G is planar, 3-connected, claw-free and well-covered, by Theorem 3,
d(v) ≤ 6 for all v in V (G). By Claim 6/2.1, if G has a vertex of degree six,
G is one of two graphs in Figure 1. By Claim 6/2.4, if G is not a graph in
Figure 1 or Figure 2, then every vertex of G must lie on a K4. By Claim
6/2.5, these K4’s must be distinct. By Claim 6/2.6, if an exterior vertex
of a K4 is joined to two vertices u and w on two other K4’s, then u ∼ w.
Thus if G is planar, 3-connected, claw-free and well-covered, then G is one
of the exceptional graphs in Figure 1 or Figure 2, or G is in the class G.
Hence we have proved Claim 6/2.

Corollary 7: Let G be a planar, 3-connected graph. Then G is claw-free
and well-dominated if and only if G is one of the exceptional graphs in
Figure 1 or Figure 2(a)-(j), or G is in the class G.

Proof: Let G be a planar, 3-connected graph. By Theorem 6, G is claw-
free and well-covered if and only if G is one of the exceptional graphs in
Figure 1 or Figure 2, or G is in the class G. By Lemma 1, the set of



claw-free, well-dominated graphs is a subset of the claw-free, well-covered
graphs. Thus we must only determine which of the exceptional graphs in
Figure 1, Figure 2, and the class G are also well-dominated.

We leave it to the reader to check that the all of the exceptional graphs
in Figure 1, and the exceptional graphs in (a)-(j) of Figure 2 are well-
dominated. Note that the graph in Figure 2(k) is not well-dominated. This
graph is a K4 and a K3 with the exterior vertices of the K4 joined to the K3

by a matching. We may minimally dominate this graph with two vertices
by choosing one vertex from the K4 and one from the K3. We may also
minimally dominate this graph by choosing all three of the exterior vertices
of the K4. Thus it is not well-dominated. Also note that the graph in
Figure 2(l) is not well-dominated. This graph is formed by two K3’s joined
by a matching. We may minimally dominate this graph with two vertices
by choosing one vertex from each of the K3’s. We may also minimally
dominate this graph by choosing all three of the vertices from one of the
K3’s. Thus it is not well-dominated.

Finally we must show that all of the graphs in the class G are well-
dominated. Suppose G is in the class G. Clearly if a set of vertices of G
contains one vertex from each K4, then it is dominating. By planarity and
3-connectivity, there is one vertex from each K4 that is not connected to
any other K4’s. Thus every minimal dominating set of G must contain
exactly one vertex from each K4. Therefore every minimal dominating set
has the same cardinality, and therefore G is well-dominated.

Therefore, G is claw-free and well-dominated if and only if G is one of
the exceptional graphs in Figure 1 or Figure 2(a)-(j) , or G is in the class
G.

Note that graphs in the class G must have the properties described in
the following two lemmas.

Lemma 8: Let G be a graph in the class G containing at least two K4’s.
Then each of the three exterior vertices of each K4 of G must be adjacent
to one vertex of at least one other K4.

Proof: Suppose {u, v, w} are the exterior vertices of a K4 of G, and x is the
interior vertex. By way of contradiction, suppose that v is not adjacent to
any vertices other than the set {u,w, x}. Then {u,w} is a 2-cut, separating
v and x from the rest of the graph and contradicting the fact that G is
3-connected. Hence v must be adjacent to a vertex of at least one other
K4.

Lemma 9: Let G be a graph in the class G containing at least three K4’s.
Then no two vertices from the same K4 may be adjacent to the same vertex
in another K4.



Proof: Suppose G fulfills the hypotheses of the lemma. Suppose {u, v, w}
are the exterior vertices of a K4 of G, and x is the interior vertex. By way
of contradiction, suppose that u and w are both adjacent to y, a vertex in
another K4. Suppose {y, z, t} are the exterior vertices of y’s K4, and s is
the interior vertex. Then d(y) = 5 and by Theorem 3 and Claim 6/2.1, y
cannot grow. By definition of G, s cannot grow and d(s) = 3. Since G is
3-connected, {v, y} is not a 2-cut, and so u or w must grow. Without loss
of generality, suppose that w grows. The vertex w cannot be adjacent to
an additional vertex, or this additional vertex together with x and y will
form a claw at w, contradicting the fact that G is claw-free. Thus w must
be adjacent to either t or z. Without loss of generality, suppose that w ∼ t.
Now d(w) = 5, and so by Theorem 3 and Claim 6/2.1, w cannot grow. By
definition of G, x cannot grow. Since G is 3-connected, {v, z} is not a 2-cut,
and so either u or t must grow. Without loss of generality, suppose u grows.
The vertex u cannot be adjacent to an additional vertex, or this additional
vertex, together with x and y will form a claw at w, contradicting the fact
that G is claw-free. Thus either u is adjacent to t or u is adjacent to z.

Suppose u ∼ t. Then d(u) = d(t) = 5, and so by Theorem 3 and Claim
6/2.1, neither u nor t may grow. But then {y, t} is a 2-cut, separating
z and s from the rest of the graph and contradicting the fact that G is
well-covered.

Suppose u ∼ z. Then d(u) = 5, and so by Theorem 3 and Claim 6/2.1,
u cannot grow. Now t cannot be adjacent to an additional vertex, since
this additional vertex, together with w and s, would form a claw at t,
contradicting the fact that G is claw-free. Also z cannot be adjacent to an
additional vertex; otherwise this additional neighbor, together with u and
s would form a claw at z, contradicting the fact that G is claw-free. Thus
since G contains at least three K4’s and is connected, v must be adjacent
to an additional vertex. But then v is a cut-vertex, contradicting the fact
that G is 3-connected. Hence u � z.

Therefore, no two vertices from the same K4 may be adjacent to the
same vertex in another K4.

There are an infinite number of planar, 3-connected, claw-free, well-
covered (and well-dominated) graphs. To show that this is true, we will
discuss several techniques for enlarging a graph of G with n K4’s to a graph
of G with n + 3 or n + 1 K4’s. To prove that the resulting graphs are
3-connected, we will need the following terminology and theorem, which is
an extension of Menger’s Theorem.

Definition [8]: Given a vertex x and a set U of vertices, an x,U-fan is a
set of paths from x to U such that any two of them share only the vertex
x.
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Figure 10: Building a graph in the class G from a smaller graph in G using
Technique 1.

Theorem 10 [3]: A graph is k-connected if and only if it has at least k +1
vertices and, for every choice of x and U with |U | ≥ k, it has an x,U -fan
of size k.

Technique 1: Let G be a graph in G on n K4’s containing a vertex of
degree five, call it u. Then u must be a vertex of a K4 that is adjacent
to two other vertices on two other distinct K4’s, by Lemma 9. Call these
neighbors of u in other K4’s v and w. By definition of G, v ∼ w. Delete
the edges {uv, uw, vw} from G and insert three new K4’s. Join each of u,
v and w to two distinct exterior vertices on two distinct new K4’s so that
each of u, v and w has edges to a unique pair of new K4’s, and add a set
of edges necessary for claw-freedom. Each new K4 then has one remaining
exterior vertex of degree three; form a triangle with these vertices so that
they all have degree five. Call the resulting graph G+. (See Figure 10 for
an illustration.) By Theorem 10, there exist three vertex disjoint paths
from any vertex in V (G) − {u, v, w} to the set U = {u, v, w}. Thus if x is
a vertex of V (G)−{u, v, w} and y is a new vertex, there exist three vertex
disjoint paths from x to y, since the paths from x to U may be extended
in a vertex disjoint way to y. It is left to the reader to check that there are
three vertex disjoint paths in G+ between any two vertices of U , between a
vertex of U and a new vertex, and between any two new vertices. Thus G+

is 3-connected. It is straightforward to check that G+ is claw-free, planar
and well-covered, and so G+ is still a graph in G, and it contains twelve
more vertices than G does.

Technique 2: Let G be a graph in G on n K4’s containing a K4 with two
vertices of degree four; call them u and v. By Lemma 9, the fourth neighbors
of u and v (i.e. the neighbors of u and v that are in another K4) are distinct;
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Figure 11: Building a graph in the class G from a smaller graph in G using
Technique 2.

call them w and x, such that u ∼ w and v ∼ x. Note that w and x cannot
be in the same K4; otherwise the third exterior vertex of the K4 containing
u and v together with the third exterior vertex of the K4 containing w and
x would form a 2-cut, separating u, v, w, x and the two interior vertices of
the two K4’s from the rest of the graph. Delete the edge vx from G and
insert a new K4. Let the exterior vertices of the new K4 be y, z and t, and
join the new K4 with the following edges: uy, wy, zv, tx. Call the resulting
graph G+. (See Figure 11 for an illustration.) By Theorem 10, there exist
three vertex disjoint paths from any vertex in V (G) − {u, v, x} to the set
U = {u, v, x}. Thus if s is a vertex of V (G)−{u, v, x} and r is a new vertex,
there exist three vertex disjoint paths from s to r, since the paths from s
to U may be extended in a vertex disjoint way to r. It is left to the reader
to check that there are three vertex disjoint paths in G+ between any two
vertices of U , between a vertex of U and a new vertex, and between any
two new vertices. Thus G+ is 3-connected. It is straightforward to check
that G+ is claw-free, planar and well-covered, and so G+ is still a graph in
G, and it contains four more vertices than G does.

Technique 3: Let G be a graph in G on n K4’s containing at least three
edges with the property that the vertices of the edge have degree four and
the edge joins two K4’s (i.e. the edge is not contained within a K4). Insert
a new K4, and join it to G so that each of the exterior neighbors of the new
K4 is joined to the two vertices of one of the edges of G with the property.
(See Figure 12 for an illustration of building a graph in G with four K4’s
from a graph of G with three K4’s using Technique 3.) The three edges we
use to join the new K4 are shown in bold in the original graph. Again we
use Theorem 10 to show that the resulting graph is 3-connected. Here let
U be a set of three vertices containing one vertex from each of the three
edges with the property used to build the new graph. It is straightforward



������������

���
�

�������
�

������������

	�		�	




���
�


�

�
������

�������
�

������������

������������

���
�

�������
�

���
�

���
�

���
�

�� 
 

!�!!�!"
"

##$
$

%�%%�%&�&&�&

'�''�'(�((�( )�))�)**

+�++�+,
,

--.
.

/�//�/0�00�0

112
2

334
4

556
6

778
8

Figure 12: Building a graph in the class G from a smaller graph in G using
Technique 3.

to check that the new graph is claw-free, planar and well-covered, and so
this graph is still a graph in G, and it contains four more vertices than G
does.

Note that by Lemma 8, each graph G in G either contains a vertex
of degree five, or all the exterior vertices of the K4’s in G have degree
four. Thus at least one of these three techniques can be applied to any
given graph in G to build a larger graph (i.e. a graph with more vertices)
in G. Hence the class of graphs G contains an infinite number of graphs.
Therefore there are an infinite number of planar, 3-connected, claw-free,
well-covered (and well-dominated) graphs.

Now that we know which graphs are planar, 3-connected, claw-free and
well-covered (or well-dominated), the obvious next question would be to
relax one of these properties and see if we can still classify those graphs.
An introduction to the author’s research can be found in [5].



REFERENCES

1. S.R. Campbell and M.D. Plummer. On well-covered 3-polytopes. Ars
Combin., 25A (1988) 215-242.
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