
Homework Assignment 1
Math 3001 — Fall 2014

Exercises: 1.2.1 – 1.2.3.

1.2.1 (a) Prove that
√

3 is irrational. Does the same argument show that
√

6 is irrational?

solution: We proceed by contradiction. Suppose that
√

3 is rational. Then there exist
relatively prime integers p and q for which

√
3 = p/q. (Relatively prime means that

gcd(p, q) = 1, that is, p and q have no common factors.) It follows that (p/q)2 = 3, and
so

p2 = 3q2. (1)

Hence 3 divides p2, which implies that 3 divides p. (This is known as Euclid’s Lemma,
and to some, the Fundamental Theorem of Arithmetic.) Thus there is an integer r for
which 3r = p, and substituting back into Equation (1), we obtain

3r2 = q2. (2)

Thus 3 divides q, and we have our contradiction. (We contradicted the fact that p and
q have no common divisors.)
· · ·
The same style of argument may be used to prove that

√
6 is irrational, though the

heart of the argument needs some additional justification.
Suppose that

√
6 = p/q, where p and q are relatively prime integers. Then

p2 = 6q2, (3)

which implies that 6 divides p2. We would now like to say that 6 divides p, but this
requires proof. One way to make the argument is as follows: since p2 is divisible by 6,
then
• p2 is divisible by 2, hence 2 divides p;
• p2 is divisible by 3, hence 3 divides p.

Both of these claims follow from Euclid’s Lemma. Now, since both 2 and 3 divide p, it
follows that p is divisible by 6. Thus there exists an integer r for which 6r = p. Hence

6r2 = q2. (4)

By the same argument, 6 divides q, and we have a contradiction.

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to prove that
√

4
is irrational?

solution: The crux to each of these proofs is the statement, “if a divides p2, then a
divides p”. That is where this argument will fail. For the sake of seeing the argument
out, here it is:
Suppose, by contradiction, that

√
4 = p/q is rational with p and q relatively prime.

Then as before, we have

p2 = 4q2. (5)

But now, if 4 divides p2, we can only conclude that p is even. That is, p is divisible by
2. So p = 2r for some integer r. Hence

r2 = q2, (6)

which implies that r = ±q. Thus p = ±2q. You might think this is a contradiction since
now p and q share all the factors of q. But, this is not a contradiction because p and
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q do not have any common factors when q = ±1. In fact, our algebraic argument has
given us the solutions, which means we should not have used “proof by contradiction”
in the first place.

1.2.2 Decide which of the following represent true statements about the nature of sets. For any
that are false, provide a specific example where the statement in question does not hold.
(a) If A1 ⊇ A2 ⊇ A3 ⊇ A4 · · · are all sets containing an infinite number of elements, then

the intersection ∩∞n=1An is infinite as well.

solution: False. See example in book, or An = [−1/2n, 1/2n].

(b) If A1 ⊇ A2 ⊇ A3 ⊇ A4 · · · are all finite, nonempty sets of real numbers, then the
intersection ∩∞n=1An is finite and nonempty.

solution: True.

(c) A ∩ (B ∪ C) = (A ∩B) ∪ C.

solution: False. Let A = B, A 6= C, and all sets nonempty. Then A ∩ (B ∪ C) = A
and (A ∩B) ∪ C = A ∪ C.

(d) A ∩ (B ∩ C) = (A ∩B) ∩ C.

solution: True.

(e) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

solution: True.

1.2.3 (De Morgan’s Laws.) Let A and B be subsets of R.
(a) If x ∈ (A ∩B)c, explain why x ∈ Ac ∪Bc. This shows that (A ∩B)c ⊆ Ac ∪Bc.

solution: If x ∈ (A ∩ B)c, then x 6∈ A ∩ B, which is the same as saying “not (x ∈ A
and x ∈ B)”. Thus x 6∈ A or x 6∈ B. Hence x ∈ Ac or x ∈ Bc, i.e. x ∈ Ac ∪Bc.

(b) Prove the reverse inclusion (A∩B)c ⊇ Ac ∪Bc, and conclude that (A∩B)c = Ac ∪Bc.

solution: Suppose that x ∈ Ac ∪ Bc. Then x ∈ Ac or x ∈ Bc, so by definition x 6∈ A
or x 6∈ B. Equivalently, this is “not (x ∈ A and x ∈ B)”. Hence x 6∈ A ∩ B, i.e.
x ∈ (A ∩B)c. By parts (a) and (b), we have equality of sets.

(c) Show (A ∪B)c = Ac ∩Bc by demonstrating inclusion both ways.

solution:

x ∈ (A ∪B)c ⇔ ¬(x ∈ A ∪B)

⇔ ¬(x ∈ A ∨ x ∈ B)

⇔ x 6∈ A ∧ x 6∈ B

⇔ x ∈ Ac ∧ x ∈ Bc

⇔ x ∈ Ac ∩Bc.


