Homework Assignment 4 Math 3001 — Fall 2014 Due Friday, September 19

Exercises:

- **2.2.1.** Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.
 - (a) $\lim_{n \to \infty} \frac{1}{(6n^2+1)} = 0.$
 - (b) $\lim \frac{3n+1}{2n+5} = \frac{3}{2}$.
- **2.3.1.** Show that the constant sequence (a, a, a, a, ...) converges to a.
- **2.3.3.** (Squeeze Theorem) Show that if $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, and if $\lim x_n = \lim z_n = \ell$, then $\lim y_n = \ell$ as well.
- **2.3.4.** Show that the limits, if they exist, must be unique. In other words, assume $\lim a_n = \ell_1$ and $\lim a_n = \ell_2$, then prove that $\ell_1 = \ell_2$.
- (a) Show that if (b_n) → b, then the sequence of absolute values |b_n| converges to |b|.
 (b) Is the converse of part (a) true? If we know that |b_n| → |b|, can we deduce that (b_n) → b?
- **2.3.7.** (a) Let (a_n) be a bounded (not necessarily convergent) sequence, and assume $\lim b_n = 0$. Show that $\lim(a_n b_n) = 0$. Why are we not allowed to the use Algebraic Limit Theorem to prove this?
 - (b) Can we conclude anything about the convergence of $(a_n b_n)$ if we assume that (b_n) converges to some nonzero limit b?
 - (c) Use (a) to prove Theorem 2.3.3, part (iii), for the case when a = 0.
- **2.3.8.** Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):
 - (a) sequences (x_n) and (y_n) , which both diverge, but whose sum $(x_n + y_n)$ converges;
 - (b) sequences (x_n) and (y_n) , where (x_n) converges, (y_n) diverges, and $(x_n + y_n)$ converges;
 - (c) a convergent sequence (b_n) with $b_n \neq 0$ for all n such that $(1/b_n)$ diverges;
 - (d) an unbounded sequence (a_n) and a convergent sequence (b_n) with $(a_n b_n)$ bounded;

(e) two sequences (a_n) and (b_n) , where (a_nb_n) and (a_n) converge but (b_n) does not. **2.3.10.** If $(a_n) \to 0$ and $|b_n - b| \le a_n$, then show that $(b_n) \to b$.