HOMEWORK ASSIGNMENT 9 MATH 3001 — FALL 2014 DUE FRIDAY, OCTOBER 24

Exercises:

4.2.1. Use Definition 4.2.1 (the definition of a functional limit) to prove that

(c) $\lim_{x\to 2} x^3 = 8$. [Hint: $(a^3 + b^3) = (a+b)(a^2 - ab + b^2)$].

4.2.8. Assume $f(x) \ge g(x)$ for all x in some set A on which f and g are defined. Show that for any limit point c of A we must have

$$\lim_{x \to c} f(x) \ge \lim_{x \to c} g(x).$$

- **4.2.9.** Prove the Squeeze Theorem: Let f, g, and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain A. If $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$ at some limit point c of A, show that $\lim_{x\to c} g(x) = L$.
- **4.3.1.** Let $g(x) = \sqrt[3]{x}$.
 - (a) Prove that g is continuous at c = 0.
 - (b) Prove that g is continuous at each point $c \neq 0$.
- **4.3.7.** Assume $h: \mathbf{R} \to \mathbf{R}$ is continuous on \mathbf{R} , and let $K = \{x: h(x) = 0\}$. Show that K is a closed set.