Cantor set
 Math 3001 - Fall 2014

The Cantor set is a subset of the interval $[0,1]$, which is defined as follows. Let $C_{0}=[0,1]$, and make the set C_{1} by removing the open middle-third interval of C_{0}. That is,

$$
C_{1}=C_{0} \backslash\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] .
$$

Now make C_{2} by removing the open middle-thirds of each of the intervals of C_{1} :

$$
C_{2}=C_{1} \backslash\left(\frac{1}{9}, \frac{2}{9}\right) \backslash\left(\frac{7}{9}, \frac{8}{9}\right)=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] .
$$

Continuing this process, define C_{n} to be the set C_{n-1} with the open middle-third of each of its intervals removed. We now define the Cantor set C as

$$
C=\bigcap_{n=0}^{\infty} C_{n} .
$$

(1) Draw a picture of $C_{0}, C_{1}, C_{2}, C_{3}, \ldots$ to get a feel for these sets.
(2) Prove that C is non-empty. What are some of the values in the Cantor set? Are 0 and 1 in C ? Are there other values in C ?
(3) Prove that C_{n} is a closed for every $n \in \mathbf{N}$.
(4) Prove that C is compact.
(5) Prove that C contains no isolated points.
(6) To go from C_{0} to C_{1}, we remove $1 / 3$ of the interval.

To go from C_{0} to C_{2}, we first remove the middle $1 / 3$ of $[0,1]$ (getting to C_{1}), then we remove $2 / 9$ of the interval $[0,1]$ (that is, $1 / 9$ from each of the intervals of C_{1}) to get to C_{2}. So in total, we remove $\frac{1}{3}+\frac{2}{9}$ of the interval $[0,1]$ to go from C_{0} to C_{2}.

Between C_{0} and C_{3}, how much of the interval is removed? From C_{0} to C_{4} ?
(7) How much of the interval is removed between C_{0} and C ? In other words, what is the "length" of C ?
(8) Let D_{n} be the set of decimals of length n consisting of only 0's and 1's. For example,

$$
\begin{aligned}
D_{1} & =\{0.0,0.1\} \\
D_{2} & =\{0.00,0.01,0.10,0.11\} .
\end{aligned}
$$

Prove that the elements of D_{n} are in a one-to-one correspondence with the intervals of C_{n}.
(9) What number in the Cantor set does $0 . \overline{0}$ represent? How about $0 . \overline{1}$? $0.0 \overline{1}$?
(10) Let D denote the set of all infinite decimals consisting of only 0 's and 1 's. Use the nested interval property to prove that each element in D corresponds to an element of the cantor set.
(11) What is the cardinality of the Cantor set? (Is it finite? Countably infinite? Uncountable?)

