Cantor set Math 3001 — Fall 2014 The Cantor set is a subset of the interval [0,1], which is defined as follows. Let $C_0 = [0,1]$, and make the set C_1 by removing the open middle-third interval of C_0 . That is, $$C_1 = C_0 \setminus \left(\frac{1}{3}, \frac{2}{3}\right) = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right].$$ Now make C_2 by removing the open middle-thirds of each of the intervals of C_1 : $$C_2 = C_1 \setminus \left(\frac{1}{9}, \frac{2}{9}\right) \setminus \left(\frac{7}{9}, \frac{8}{9}\right) = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$ Continuing this process, define C_n to be the set C_{n-1} with the open middle-third of each of its intervals removed. We now define the Cantor set C as $$C = \bigcap_{n=0}^{\infty} C_n.$$ - (1) Draw a picture of C_0 , C_1 , C_2 , C_3 , ... to get a feel for these sets. - (2) Prove that C is non-empty. What are some of the values in the Cantor set? Are 0 and 1 in C? Are there other values in C? - (3) Prove that C_n is a closed for every $n \in \mathbf{N}$. - (4) Prove that C is compact. - (5) Prove that C contains no isolated points. - (6) To go from C_0 to C_1 , we remove 1/3 of the interval. To go from C_0 to C_2 , we first remove the middle 1/3 of [0,1] (getting to C_1), then we remove 2/9 of the interval [0,1] (that is, 1/9 from each of the intervals of C_1) to get to C_2 . So in total, we remove $\frac{1}{3} + \frac{2}{9}$ of the interval [0,1] to go from C_0 to C_2 . Between C_0 and C_3 , how much of the interval is removed? From C_0 to C_4 ? - (7) How much of the interval is removed between C_0 and C? In other words, what is the "length" of C? - (8) Let D_n be the set of decimals of length n consisting of only 0's and 1's. For example, $$D_1 = \{0.0, 0.1\}$$ $$D_2 = \{0.00, 0.01, 0.10, 0.11\}.$$ Prove that the elements of D_n are in a one-to-one correspondence with the intervals of C_n . - (9) What number in the Cantor set does $0.\overline{0}$ represent? How about $0.\overline{1}$? $0.0\overline{1}$? - (10) Let D denote the set of all infinite decimals consisting of only 0's and 1's. Use the nested interval property to prove that each element in D corresponds to an element of the cantor set. - (11) What is the cardinality of the Cantor set? (Is it finite? Countably infinite? Uncountable?)