Homework Assignment 10 Math 3001 — Fall 2014 Due Friday, October 31

Exercises:

- **4.4.2.** Show that $f(x) = 1/x^2$ is uniformly continuous on the set $[1, \infty)$ but not on the set (0, 1].
- **4.4.3.** Show that if f(x) is continuous on [a, b] with f(x) > 0 for all $a \le x \le b$, then 1/f(x) is bounded on [a, b].
- **4.4.9.** A function $f: A \to \mathbf{R}$ is called *Lipschitz* if there exists a bound M > 0 such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M$$

for all $x, y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

(a) Show that if $f: A \to \mathbf{R}$ is Lipschitz, then f is uniformly continuous on A.

- **4.5.5.** Finish the proof of the Intermediate Value Theorem using the Axiom of Completeness started on the bottom of page 122 (*Proof.* **I**.)
- **4.5.7.** Let f be a continuous function on the close interval [0, 1] with range also contained in [0, 1]. Prove that f must have a fixed point; that is, show that f(x) = x for at least one value of $x \in [0, 1]$.