Homework Assignment 10

Math 3001 - Fall 2014
Due Friday, October 31

Exercises:

4.4.2. Show that $f(x)=1 / x^{2}$ is uniformly continuous on the set $[1, \infty)$ but not on the set $(0,1]$.
4.4.3. Show that if $f(x)$ is continuous on $[a, b]$ with $f(x)>0$ for all $a \leq x \leq b$, then $1 / f(x)$ is bounded on $[a, b]$.
4.4.9. A function $f: A \rightarrow \mathbf{R}$ is called Lipschitz if there exists a bound $M>0$ such that

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M
$$

for all $x, y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.
(a) Show that if $f: A \rightarrow \mathbf{R}$ is Lipschitz, then f is uniformly continuous on A.
4.5.5. Finish the proof of the Intermediate Value Theorem using the Axiom of Completeness started on the bottom of page 122 (Proof. I.)
4.5.7. Let f be a continuous function on the close interval $[0,1]$ with range also contained in $[0,1]$. Prove that f must have a fixed point; that is, show that $f(x)=x$ for at least one value of $x \in[0,1]$.

