Homework Assignment 11

Math 3001 - Fall 2014
Due Friday, November 31

Exercises:

5.2.1. Prove part (i) of Theorem 5.2.4 (part (ii) was done in class): Let f and g be functions defined on an interval A, and assume both are differentiable at some point $c \in A$. Then $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
5.2.6. (a) Assume that g is differentiable on $[a, b]$ and satisfies $g^{\prime}(a)<0<g^{\prime}(b)$. Show that there exists a point $x \in(a, b)$ where $g(a)>g(x)$, and a point $y \in(a, b)$ where $g(y)<g(b)$.
(b) Complete the proof of Darboux's Theorem started on page 136.
5.3.1. Recall from Exercise 4.4 .9 that a function $f: A \rightarrow \mathbf{R}$ is Lipschitz on A if there exists an $M>0$ such that

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M
$$

for all $x, y \in A$. Show that if f is differentiable on a closed interval $[a, b]$ and f^{\prime} is continuous on $[a, b]$, then f is Lipschitz on $[a, b]$.
5.3.3. Let h be a differentiable function defined on the interval $[0,3]$, and assume that $h(0)=1, h(1)=2$, and $h(3)=2$.
(a) Argue that there exists a point $d \in[0,3]$ where $h(d)=d$.
(b) Argue that at some point c we have $h^{\prime}(c)=1 / 3$.
(c) Argue that $h^{\prime}(x)=1 / 4$ at some point in the domain.
5.3.5. A fixed point of a function f is a value x where $f(x)=x$. Show that if f is differentiable on an interval with $f^{\prime}(x) \neq 1$, then f can have at most one fixed point.

