Homework Assignment 12 Math 3001 — Fall 2014 DUE FRIDAY, DECEMBER 5

Exercises:

- (1) (Exercise 7.2.1) Prove that if f is a bounded function on [a, b], then $L(f) \leq U(f)$.
- (2) Let $f(x) = x^2$ and let $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$ be a partition of [0, 1]. (a) Use the fact that $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$ to evaluate $U(f, P_n)$ and $L(f, P_n)$.
 - (b) Use your expressions from part (a) to prove that f(x) is Riemann-integrable on [0,1].
 - (c) Use your expressions from part (a) to evaluate $\int_0^1 f(x) dx$. (Do not use the fundamental theorem of calculus.)
- (3) Let

$$f(x) = \begin{cases} 0 & \text{if } x = 2^{-n} \text{ for some } n \in \mathbf{N} \\ 1 & \text{otherwise.} \end{cases}$$

Prove that f is integrable on [0, 1] and compute $\int_0^1 f(x) dx$.

(4) (Exercise 7.5.7) If g is continuous on [a, b], show that there exists a point $c \in (a, b)$ such that

$$g(c) = \frac{1}{b-a} \int_a^b g(x) \, dx.$$