Homework Assignment 12

Math 3001 - Fall 2014
Due Friday, December 5

Exercises:

(1) (Exercise 7.2.1) Prove that if f is a bounded function on $[a, b]$, then $L(f) \leq U(f)$.
(2) Let $f(x)=x^{2}$ and let $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$ be a partition of $[0,1]$.
(a) Use the fact that $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ to evaluate $U\left(f, P_{n}\right)$ and $L\left(f, P_{n}\right)$.
(b) Use your expressions from part (a) to prove that $f(x)$ is Riemann-integrable on $[0,1]$.
(c) Use your expressions from part (a) to evaluate $\int_{0}^{1} f(x) d x$. (Do not use the fundamental theorem of calculus.)
(3) Let

$$
f(x)= \begin{cases}0 & \text { if } x=2^{-n} \text { for some } n \in \mathbf{N} \\ 1 & \text { otherwise }\end{cases}
$$

Prove that f is integrable on $[0,1]$ and compute $\int_{0}^{1} f(x) d x$.
(4) (Exercise 7.5.7) If g is continuous on $[a, b]$, show that there exists a point $c \in(a, b)$ such that

$$
g(c)=\frac{1}{b-a} \int_{a}^{b} g(x) d x .
$$

