Exercises:

(1) Provide all the details of the proof of Theorem 6.4.2:

Theorem 6.4.2. Let f_n be continuous functions defined on a set $A \subseteq \mathbf{R}$, and assume $\sum_{n=1}^{\infty} f_n$ converges uniformly on A to a function f. Then, f is continuous on A.

6.3.2 Consider the sequence of functions defined by

$$g_n(x) = \frac{x^n}{n}.$$

- (a) Show that (g_n) converges uniformly on [0, 1] and find $g = \lim g_n$. Show that g is differentiable and compute q'(x) for all $x \in [0, 1]$.
- (b) Now, show that (g'_n) converges on [0, 1]. Is the convergence uniform? Set h = $\lim g'_n$ and compare h to g'. Are they the same?
- **6.4.1** Theorem 6.4.4 in the book states:

Theorem 6.4.4 (Cauchy Criterion for Uniform Convergence of Series). A series $\sum_{n=1}^{\infty} f_n$ converges uniformly on $A \subseteq \mathbf{R}$ if and only if for every $\varepsilon > 0$ there exists an $N \in \mathbf{N}$ such that for all $n > m \ge N$,

$$|f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x)| < \varepsilon$$

for all $x \in A$.

Use Theorem 6.4.4 to prove that if $\sum_{n=1}^{\infty} g_n$ converges uniformly, then (g_n) converges uniformly to zero.

- **6.4.6** (sort of) Let $f_n(x) = x^n/n$.

 - (a) Prove that $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges pointwise on (-1, 1). (b) [Hard.] Prove that for each $c \in (0, 1)$, $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [-c, c]. Conclude that f is continuous on [-c, c].
 - (c) Prove that $\sum_{n=1}^{\infty} f_n(x)$ does not converge when x = 1.
 - (d) Does $\sum_{n=1}^{\infty} f_n(x)$ converges when x = -1? Prove your claim.