Homework Assignment 2
Math 3001 - Fall 2014
Due Friday, September 5

Exercises:

1.2.5. Use the triangle inequality to establish the inequalities
(a) $|a-b| \leq|a|+|b|$;
(b) $||a|-|b|| \leq|a-b|$.
1.2.6. Given a function f and a subset A of its domain, let $f(A)$ represent the range of f over the set A; that is, $f(A)=\{f(x): x \in A\}$.
(a) Let $f(x)=x^{2}$. If $A=[0,2]$ (the closed interval $\{x \in \mathbf{R}: 0 \leq x \leq 2\}$) and $B=[1,4]$, find $f(A)$ and $f(B)$. Does $f(A \cap B)=f(A) \cap f(B)$ in this case? Does $f(A \cup B)=f(A) \cup f(B)$?
(b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
(c) Show that, for an arbitrary function $g: \mathbf{R} \rightarrow \mathbf{R}$, it is always true that $g(A \cap B) \subseteq$ $g(A) \cap g(B)$ for all sets $A, B \subseteq \mathbf{R}$.
(d) Form and prove a conjecture about the relationship between $g(A \cup B)$ and $g(A) \cup$ $g(B)$ for an arbitrary function g.
1.2.7. Given a function $f: D \rightarrow \mathbf{R}$ and a subset $B \subseteq \mathbf{R}$, let $f^{-1}(B)$ be the set of all points from the domain D that get mapped into B; that is $f^{-1}(B)=\{x \in D: f(x) \in B\}$. This set is called the preimage of B.
(a) Let $f(x)=x^{2}$. If A is the closed interval $[0,4]$ and B is the closed interval $[-1,1]$, find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ in this case? Does $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$?
(b) The good behavior of preimages demonstrated in (a) is completely general. Show that for an arbitrary function $g: \mathbf{R} \rightarrow \mathbf{R}$, it is always true that $g^{-1}(A \cap B)=$ $g^{-1}(A) \cap g^{-1}(B)$ and $g^{-1}(A \cup B)=g^{-1}(A) \cup g^{-1}(B)$ for all sets $A, B \subseteq \mathbf{R}$.
1.2.10. Let $y_{1}=1$, and for each $n \in \mathbf{N}$ define $y_{n+1}=\left(3 y_{n}+4\right) / 4$.
(a) Use induction to prove that the sequence satisfies $y_{n}<4$ for all $n \in \mathbf{N}$.
(b) Use another induction argument to show the sequence $\left(y_{1}, y_{2}, y_{2}, \ldots\right)$ is increasing.
1.2.12. For this exercise, assume Exercise 1.2 .3 has been completed.
(a) Show how induction can be used to conclude that

$$
\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)^{c}=A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{n}^{c}
$$

for any finite $n \in \mathbf{N}$.
(b) Explain why induction cannot be used to conclude

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{c}=\bigcap_{n=1}^{\infty} A_{n}^{c} .
$$

It might be useful to consider part (a) of Exercise 1.2.2. [Hint: Can you use induction to "prove" Exercise 1.2.2(a)?]
(c) Is the statement in part (b) valid? If so, write a proof that does not use induction.

