Homework Assignment 2 Math 3001 — Fall 2014 Due Friday, September 5

Exercises:

- 1.2.5. Use the triangle inequality to establish the inequalities
 - (a) $|a b| \le |a| + |b|$;
 - (b) $||a| |b|| \le |a b|$.
- **1.2.6.** Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(A) = \{f(x) : x \in A\}$.
 - (a) Let $f(x) = x^2$. If A = [0,2] (the closed interval $\{x \in \mathbf{R} : 0 \le x \le 2\}$) and B = [1,4], find f(A) and f(B). Does $f(A \cap B) = f(A) \cap f(B)$ in this case? Does $f(A \cup B) = f(A) \cup f(B)$?
 - (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
 - (c) Show that, for an arbitrary function $g \colon \mathbf{R} \to \mathbf{R}$, it is always true that $g(A \cap B) \subseteq g(A) \cap g(B)$ for all sets $A, B \subseteq \mathbf{R}$.
 - (d) Form and prove a conjecture about the relationship between $g(A \cup B)$ and $g(A) \cup g(B)$ for an arbitrary function g.
- **1.2.7.** Given a function $f: D \to \mathbf{R}$ and a subset $B \subseteq \mathbf{R}$, let $f^{-1}(B)$ be the set of all points from the domain D that get mapped into B; that is $f^{-1}(B) = \{x \in D : f(x) \in B\}$. This set is called the *preimage* of B.
 - (a) Let $f(x) = x^2$. If A is the closed interval [0,4] and B is the closed interval [-1,1], find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ in this case? Does $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$?
 - (b) The good behavior of preimages demonstrated in (a) is completely general. Show that for an arbitrary function $g: \mathbf{R} \to \mathbf{R}$, it is always true that $g^{-1}(A \cap B) = g^{-1}(A) \cap g^{-1}(B)$ and $g^{-1}(A \cup B) = g^{-1}(A) \cup g^{-1}(B)$ for all sets $A, B \subseteq \mathbf{R}$.
- **1.2.10.** Let $y_1 = 1$, and for each $n \in \mathbb{N}$ define $y_{n+1} = (3y_n + 4)/4$.
 - (a) Use induction to prove that the sequence satisfies $y_n < 4$ for all $n \in \mathbb{N}$.
 - (b) Use another induction argument to show the sequence $(y_1, y_2, y_2, ...)$ is increasing.
- **1.2.12.** For this exercise, assume Exercise 1.2.3 has been completed.
 - (a) Show how induction can be used to conclude that

$$(A_1 \cup A_2 \cup \cdots \cup A_n)^c = A_1^c \cap A_2^c \cap \cdots \cap A_n^c$$

for any finite $n \in \mathbb{N}$.

(b) Explain why induction cannot be used to conclude

$$\left(\bigcup_{n=1}^{\infty} A_n\right)^c = \bigcap_{n=1}^{\infty} A_n^c.$$

1

It might be useful to consider part (a) of Exercise 1.2.2. [Hint: Can you use induction to "prove" Exercise 1.2.2(a)?]

(c) Is the statement in part (b) valid? If so, write a proof that does not use induction.