Homework Assignment 9

Math 3001 - Fall 2014
Due Friday, October 24

Exercises:

4.2.1. Use Definition 4.2 .1 (the definition of a functional limit) to prove that
(c) $\lim _{x \rightarrow 2} x^{3}=8$. $\left[\right.$ Hint: $\left.\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)\right]$.
4.2.8. Assume $f(x) \geq g(x)$ for all x in some set A on which f and g are defined. Show that for any limit point c of A we must have

$$
\lim _{x \rightarrow c} f(x) \geq \lim _{x \rightarrow c} g(x) .
$$

4.2.9. Prove the Squeeze Theorem: Let f, g, and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain A. If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$ at some limit point c of A, show that $\lim _{x \rightarrow c} g(x)=L$.
4.3.1. Let $g(x)=\sqrt[3]{x}$.
(a) Prove that g is continuous at $c=0$.
(b) Prove that g is continuous at each point $c \neq 0$.
4.3.7. Assume $h: \mathbf{R} \rightarrow \mathbf{R}$ is continuous on \mathbf{R}, and let $K=\{x: h(x)=0\}$. Show that K is a closed set.

