# ANALYSIS — SPRING 2015 CU BOULDER MATH 3001

### WORKSHEET 11

Read sections: 4.3–4.4

**Definition.** A function  $f: A \to \mathbb{R}$  is *continuous* at a point  $c \in A$  if, for each  $\epsilon > 0$ , there exists  $\delta > 0$  such that if  $|x - c| < \delta$ , it follows that  $|f(x) - f(c)| < \epsilon$ .

If f is continuous at every point in its domain A, then f is continuous on A.

### Exercise 1. Prove:

**Theorem** (Characterizations of continuity). Let  $f: A \to \mathbb{R}$ , and let  $c \in A$  be a limit point of A. The function f is continuous at c if and only if at least one of the following conditions is met.

- i.) For all  $\epsilon > 0$ , there exists  $\delta > 0$  such that  $|x c| < \delta$  (and  $x \in A$ ) implies  $|f(x) f(c)| < \epsilon$ .
- ii.)  $\lim_{x\to c} f(x) = f(c)$ .
- iii.) For all  $V_{\epsilon}(f(c))$ , there exists  $V_{\delta}(c)$  such that if  $x \in V_{\delta}(c)$  (and  $x \in A$ ), then  $f(x) \in V_{\epsilon}(f(c))$ .
- iv.) If  $(x_n) \to c$  (and  $x_n \in A$ ), then  $(f(x_n)) \to f(c)$ .

### Exercise 2. Prove:

**Theorem** (Criterion for discontinuity). Let  $f: A \to \mathbb{R}$ , and let  $c \in A$  be a limit point of A. If there exists a sequence  $(x_n) \subseteq A$  where  $(x_n) \to c$  but  $(f(x_n))$  does not converge to f(c), then f is not continuous at c.

**Exercise 3.** Prove that  $f(x) = \sqrt[3]{x}$  is continuous on  $[0, \infty)$ . [Hint: the identity  $(a^3 - b^3) = (a - b)(a^2 + ab + b^2)$  may be helpful.]

## Exercise 4. Let

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n} \in \mathbb{Q} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Prove that f is continuous at every irrational number, and discontinuous at every rational number.

**Exercise 5.** Prove that  $f: \mathbb{Z} \to \mathbb{R}$  is continuous on  $\mathbb{Z}$ .

#### Exercise 6. Prove:

**Theorem** (Algebraic continuity theorem). Assume  $f: A \to \mathbb{R}$  and  $g: A \to \mathbb{R}$  are continuous at a point  $c \in A$ . Then,

- i.) kf(x) is continuous at c for all  $k \in \mathbb{R}$ .
- ii.) f(x) + g(x) is continuous at c.

- iii.) f(x)q(x) is continuous at c.
- iv.) f(x)/g(x) is continuous at c, provided the quotient is defined.

**Exercise 7.** Let  $f: A \to \mathbb{R}$ ,  $g: B \to \mathbb{R}$ , and suppose  $f(A) \subseteq B$ . Prove that if f(x) is continuous at  $c \in A$ , and g(x) is continuous at  $f(c) \in B$ , then g(f(x)) is continuous at c.

**Exercise 8.** Suppose  $f: \mathbb{R} \to \mathbb{R}$  is continuous on  $\mathbb{R}$ . Prove that  $B = \{x: f(x) = 0\}$  is a closed set.

**Exercise 9.** Let  $f: \mathbb{R} \to \mathbb{R}$ , and assume there exists  $c \in (0,1)$  for which

$$|f(x) - f(y)| \le c|x - y|$$

for all  $x, y \in \mathbb{R}$ .

- i.) Prove that f is continuous on  $\mathbb{R}$ .
- ii.) Fix a value  $a \in \mathbb{R}$ . Prove that the sequence  $(a_n) = (f(a), f(f(a)), f(f(f(a))), \ldots)$  is a Cauchy sequence.
- iii.) Let  $a = \lim a_n$ . Prove that a is the unique fixed point of f(x). That is, prove that f(a) = a, and that x = a is the only value for which f(x) = x.
- iv.) Prove that the sequence  $(x_n) = (f(x), f(f(x)), f(f(f(x))), \ldots)$  converges to a for every  $x \in \mathbb{R}$ .

### Exercise 10. Prove:

**Theorem.** Suppose  $f: A \to \mathbb{R}$  is continuous on A. If A is compact, then f(A) is compact.

## Exercise 11. Prove:

**Theorem** (Extreme value theorem). If  $f: A \to \mathbb{R}$  is continuous on a compact set A, then f attains a maximum and minimum on A. That is, there exist m and M in A such that  $f(m) \leq f(x) \leq f(M)$  for all  $x \in A$ .

Exercise 12. Prove that each of the following statements is false.

- i.) If  $f: A \to \mathbb{R}$  and A is compact, then f attains a maximum and minimum on A.
- ii.) If  $f: A \to \mathbb{R}$  is continuous on a closed set A, then f attains a maximum and minimum on A.
- iii.) If  $f: A \to \mathbb{R}$  is continuous on a bounded set A, then f attains a maximum and minimum on A.