Analysis — Spring 2015 CU BOULDER MATH 3001

WORKSHEET 13

Read sections: 5.1-5.2

Definition. Let $f: A \to \mathbb{R}$ be a function defined on an interval A. The derivative of f at $c \in A$ is

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c},$$

and we say that f is differentiable at c if this limit exists. If f'(c) exists for all $c \in A$, then f is differentiable on A.

Exercise 1. Prove that $f(x) = x^n$ is differentiable on \mathbb{R} , and moreover, $f'(x) = nx^{n-1}$.

Exercise 2. Let f(x) = |x|.

- a.) Prove that f(x) is differentiable on $\mathbb{R} \setminus \{0\}$.
- b.) Prove that f(x) is not differentiable at c = 0.

Exercise 3. Consider the family of functions

$$g_n(x) = \begin{cases} x^n \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0, \end{cases}$$

where $n \in \mathbb{N} \cup \{0\}$.

- a.) Prove that $g_n(x)$ is continuous at c = 0 whenever $n \ge 1$, but $g_0(x)$ is not continuous at c = 0.
- b.) Prove that $g_n(x)$ is differentiable at c = 0 whenever $n \ge 2$, but $g_1(x)$ is not differentiable at c = 0.

Exercise 4.

a.) Prove:

Theorem. If $f: A \to \mathbb{R}$ is differentiable at $c \in A$, then f is continuous at $c \in A$.

b.) Show that the converse of this statement is false. In other words, show that f being continuous at $c \in A$ does not imply that f is differentiable at $c \in A$.

Exercise 5. Prove:

Theorem. Let $f: A \to \mathbb{R}$ and $q: A \to \mathbb{R}$, and assume that f and q are differentiable at $c \in A$. Then,

(i)
$$(f+g)'(c) = f'(c) + g'(c);$$

(ii) $(kf)'(c) = kf'(c)$ for all $k \in \mathbb{R};$
(iii) $(fg)'(c) = f'(c)g(c) + f(c)g'(c);$
(iv) $(f/g)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{g(c)^2}$ provided $g(c) \neq 0.$

Exercise 6. Prove:

Theorem.

Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ satisfy $f(A) \subset B$. If f is differentiable at $c \in A$ and g is differentiable at $f(c) \in B$, then $(g \circ f)'(c) = g'(f(c))f'(c)$.

Exercise 7.

a.) Prove:

Theorem (Interior extremum theorem). Let f be differentiable function on (a, b). If f attains a maximum value at some point $c \in (a, b)$, then f'(c) = 0. Similarly, if f attains a minimal value at a point $c \in (a, b)$, then f'(c) = 0.

b.) Show that this theorem is not true for differentiable functions over closed intervals. That is, if f is differentiable on [a, b], and f attains a maximum or minimum at $c \in [a, b]$, then f'(c) is not necessarily equal to 0.

Exercise 8. Prove:

Theorem (Darboux's theorem). If f is differentiable on [a, b], and if f'(a) < L < f'(b) or f'(a) > L > f'(b), then there exists $c \in (a, b)$ such that f'(c) = L.