ANALYSIS — SPRING 2015 CU BOULDER MATH 3001

WORKSHEET 15

Read section: 7.2

Definition 1. A partition P of [a, b] is a finite, ordered set

$$P = \{ a = x_0 < x_1 < \dots < x_n = b \}.$$

Definition 2. For each subinterval, let

$$m_k = \inf\{f(x) \colon x \in [x_{k-1}, x_k]\}\$$

 $M_k = \sup\{f(x) \colon x \in [x_{k-1}, x_k]\}.$

The *lower sum* of f with respect to P is

$$L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

The *upper sum* of f with respect to P is

$$U(f, P) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}).$$

Definition 3. A partition Q is a *refinement* of P if Q contains all the points of P, i.e. $P \subseteq Q$.

Exercise 4. Prove that if $P \subseteq Q$, then $L(f, P) \leq L(f, Q)$, and $U(f, P) \geq U(f, Q)$.

Exercise 5. Prove that if P_1 and P_2 are any two partitions of [a, b], then $L(f, P_1) \leq U(f, P_2)$.

Definition 6. Let \mathcal{P} be the set of all partitions of [a,b]. The *lower integral* of f on [a,b] is

$$L(f) = \sup\{L(f, P) \colon P \in \mathcal{P}\},\$$

and the $upper\ integral\ of\ f$ on [a,b] is

$$U(f) = \inf\{U(f, P) \colon P \in \mathcal{P}\}.$$

Exercise 7. Prove that if f is a bounded function on [a, b], then $L(f) \leq U(f)$.

Definition 8. A bounded function f on [a,b] is Riemann-integrable if U(f) = L(f), and we denote this value by $\int_a^b f$, i.e. $\int_a^b f = U(f) = L(f)$.

Exercise 9. Prove:

Theorem. A bounded function f is integrable on [a,b] if and only if, for every $\epsilon > 0$, there exists a partition P_{ϵ} of [a,b] such that $U(f,P_{\epsilon}) - L(f,P_{\epsilon}) < \epsilon$.

Exercise 10. Prove:

Theorem. If f is continuous on [a, b], then it is integrable.

Exercise 11. Let f(x) = 2x + 1 over the interval [1, 3]. Let $P = \{1, 3/2, 2, 3\}$.

- a.) Compute L(f, P), U(f, P), and U(f, P) L(f, P).
- b.) Find a partition P' of [1,3] for which U(f,P')-L(f,P')<2.

Exercise 12. Prove that the constant function f(x) = k is integral on [a, b], and find the value $\int_a^b f$.