Analysis — Spring 2015 CU Boulder Math 3001

WORKSHEET 18

Read sections: 6.3 and 6.4

Exercise 1. Prove:

Theorem. Let (f_n) be a sequence of functions that converges pointwise to f on the closed interval [a, b], and assume that each f_n is differentiable. If (f'_n) converges uniformly on [a, b] to a function g, then the function f is differentiable and f' = g

Exercise 2. Let $h_n(x) = \frac{\sin(nx)}{n}$.

a.) Show that $(h_n) \to 0$ uniformly on \mathbb{R} .

b.) At what points does the sequence of (h'(x)) converge?

Exercise 3. Let $g_n(x) = x^n/n$.

a.) Show that (g_n) converges uniformly on [0,1] and find $g = \lim g_n$.

b.) Show that g is differentiable and compute g'(x) for all $x \in [0, 1]$.

c.) Show that (g'_n) converges uniformly on [0, 1]. Is the convergence uniform?

d.) Let $h = \lim g'_n$. Does h = g'?

Definition 4. For each $n \in \mathbb{N}$, let f_n and f be functions defined on a set $A \subseteq \mathbb{R}$. Consider the infinite series

(1)
$$\sum_{n=1}^{\infty} f_n(x) = f_1(x) + f_2(x) + f_3(x) + \cdots$$

and define

(2)

$$s_k(x) = f_1(x) + f_2(x) + \dots + f_k(x)$$

to be the k-th partial sum.

The infinite series (1) converges pointwise on A to f(x) if the sequence of partial sums $(s_k(x))$ converges pointwise to f on A.

The infinite series converges uniformly on A to f(x) if the sequence of partial sums $(s_k(x))$ converges uniformly to f on A.

Exercise 5. Prove:

Theorem. Let (f_n) be a sequence of continuous functions defined on a set $A \subseteq \mathbb{R}$, and assume $\sum_{n=1}^{\infty} f_n$ converges uniformly to a function f on A. Then f is continuous on A.

Exercise 6. Prove:

Theorem. A series $\sum_{n=1}^{\infty} f_n$ converges uniformly on $A \subseteq \mathbb{R}$ if and only if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all $n > m \ge N$,

$$|f_{m+1}(x) + f_{m+2}(x) + \dots + f_n(x)| < \epsilon$$

for all $x \in A$.

Exercise 7. Prove:

Theorem. For each $n \in \mathbb{N}$, let f_n be a function defined on a set $A \subseteq \mathbb{R}$, and let $M_n > 0$ be a real number satisfying $|f_n(x)| \leq M_n$ for all $x \in A$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly on A.

Exercise 8. Prove that if $\sum_{n=1}^{\infty} f_n$ converges uniformly, then (f_n) converges uniformly to 0.

Exercise 9. Prove that $g(x) = \sum_{n=1}^{\infty} \cos(2^n x)/2^n$ is continuous on all of \mathbb{R} .

Exercise 10. Prove that $h(x) = \sum_{n=1}^{\infty} x^n / n^2$ is continuous on [-1, 1].