Analysis — Spring 2015 CU BOULDER MATH 3001

WORKSHEET 4

Read sections: 2.1-2.2

Definition 1. A sequence is a function f whose domain is \mathbb{N} . In other words, a sequence is an ordered list of real numbers of infinite length where the *n*-th item in the list is f(n).

A sequence may be given explicitly: $(1, 3, 5, 7, \cdots)$ or by a rule: $(\frac{1}{n})_{n=1}^{\infty} = (\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$ or the terms in the sequence may be unspecified: (a_n) .

Definition 2. A sequence (a_n) converges to $a \in \mathbb{R}$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - a| < \epsilon$.

We write $\lim a_n = a$ or $a_n \to a$ to indicate that the sequence converges to a.

Exercise 3. Explain, in your own words, what it means for a sequence to converge.

Exercise 4. Let $(a_n) = (n^{-1/2})$. Prove that $\lim a_n = 0$.

Exercise 5. Prove that $\lim \frac{n+1}{n} = 1$.

Exercise 6. Prove that $\lim \frac{3n+1}{2n+5} = \frac{3}{2}$.

Exercise 7. The order of the phrases in the definition of convergence is very precise; reordering the words can result in a significant change to the definition. What sequences "converge" according to the following statements?

- (a) A sequence (a_n) converges to $a \in \mathbb{R}$ if there exists $\epsilon > 0$ and there exists $n \in \mathbb{N}$ such that $|a_n - a| < \epsilon.$
- (b) A sequence (a_n) converges to $a \in \mathbb{R}$ if there exists $\epsilon > 0$ such that $|a_n a| < \epsilon$ for all $n \in \mathbb{N}$.
- (c) A sequence (a_n) converges to $a \in \mathbb{R}$ if there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $|a_n - a| < \epsilon \text{ for all } \epsilon > 0.$

Exercise 8. Using the "definitions" from the previous problem,

- (a) Give an example of a sequence that converges according to definition (a) but not according to definition (b).
- (b) Give an example of a sequence that converges according to definition (b) but not according to the definition of convergence (definition 2).
- (c) Give an example of a sequence that converges according to the definition of convergence, but not according to definition (c).