
12.4: THE CROSS PRODUCT

The cross product, ~a×~b, is another way to multiply vectors. Unlike the dot product, the cross
product is a vector and is only defined for three-dimensional vectors.

Definition 1. If ~a = 〈a1, a2, a3〉 and ~b = 〈b1, b2, b3〉, then the cross product of ~a and ~b is the
vector

~a×~b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.

We can also define the cross product in terms of determinants. A determinant of order 2 is∣∣∣∣a b
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A determinant of order 3 can be defined in terms of second-order determinants:∣∣∣∣∣∣
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For example,
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We can then write the cross product of ~a and ~b as

~a×~b =
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Determinant shortcut: (diagonals method)



Example 1. Find the cross product of ~a = 〈1, 2,−3〉 and ~b = 〈2,−3,−5〉.

Solution.

Theorem 1. The vector ~a×~b is orthogonal to both ~a and ~b.

Proof. Exercise. You need to show both (~a×~b) · ~a = ~0 and (~a×~b) ·~b = ~0.

(~a×~b) · ~a =

(~a×~b) ·~b =

Right-hand rule:



Theorem 2. If θ is the angle between ~a and ~b, with 0 ≤ θ ≤ π, then

|~a×~b| = |~a||~b| sin θ.

Proof. See the text.

Corollary 3. Two non-zero vectors ~a and ~b are parallel if and only if ~a × ~b = ~0. In particular,
~a× ~a = ~0.

Proof. The vectors ~a and ~b are parallel if and only if the angle between them is θ = 0 or π. In
either case sin θ = 0, so |~a×~b| = 0 and thus ~a×~b = ~0.

Fact: The length of the cross product, |~a×~b|, is equal to the area of the parallelogram determined

by ~a and ~b.

Example 2. Find a vector perpendicular to the plane that passes through the points P = (1,−2, 5),
Q = (3, 7, 1), and R = (−2,−1, 1). Then find the area of the triangle 4PQR.

Solution.



The cross products of the standard basis vectors:

Properties: If ~u,~v, and ~w are vectors in V3 and c is a scalar, then

(1) ~u× ~v = −~v × ~u

(2) (c~u)× ~v = c(~u× ~v) = ~u× (c~v)

(3) ~u× (~v + ~w) = ~u× ~v + ~u× ~w

(4) (~u+ ~v)× ~w = ~u× ~w + ~v × ~w

(5) ~u · (~v × ~w) = (~u× ~v) · ~w

(6) ~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v)~w

Definition 2. The scalar triple product of the vectors ~a,~b, and ~c is

~a · (~b× ~c) = a ·
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Geometric significance:



Theorem 4. The volume of the parallelepiped determined by ~a,~b, and ~c is the magnitude of their
scalar triple product:

V = |~a · (~b× ~c)|.

Fact: Three vectors ~a,~b, and ~c are coplanar (they lie in the same plane) if

|~a · (~b× ~c)| = 0.

Why?

Example 3. Show that ~a = 〈1, 4,−7〉, ~b = 〈2,−1, 4〉, and ~c = 〈0,−9, 18〉 are coplanar.

Solution.


