12.5: EQUATIONS OF LINES AND PLANES

A line is determined by a point and a direction. In \mathbb{R}^2 this amounts to a point and a slope.

Let $P_0(x_0, y_0, z_0)$ be a point on a line L in \mathbb{R}^3 . Suppose the direction of L is parallel to a vector $\vec{v} = \langle a, b, c \rangle$. We can derive an equation for the line L.

Example 1.

- (a) Find a vector equation and parametric equations for the line L through the point (5, -3, 4)and parallel to the vector $2\vec{i} - 5\vec{j} - \vec{k}$.
- (b) Find two other points on the line.

Solution.

Note. Vector and parametric equations for a line are not unique. Why?

Definition 1. Given a line L with parametric equations

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$

then, if a, b, and c are all non-zero, we can solve for t to obtain the symmetric equations of L:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}.$$

If one or more of a, b, or c are zero we can still obtain symmetric equations for L. For instance, if a = 0 then

$$x = x_0, \quad \frac{y - y_0}{b} = \frac{z - z_0}{c}.$$

This means that L lies in the vertical plane $x = x_0$.

Example 2.

- (a) Find parametric and symmetric equations of the line through the points A(-1,3,6) and B(2,1,1).
- (b) At what point does this line intersect the xy-plane?

<u>Note</u>. The symmetric equations for a line through the points (x_0, y_0, z_0) and (x_1, y_1, z_1) are

We sometimes want to describe a line segment rather than an entire line. We can do so by restricting the values of t. For instance, in Example 2,

Definition 2. Two lines are **skew** if they do not intersect and are not parallel. Skew lines can not lie in the same plane.

Example 3. Show that the lines L_1 and L_2 with parametric equations

$$x = 2 + t \qquad y = -3 + 2t \qquad z = 1 - t$$
$$x = 3 - 2s \qquad y = -1 - 2s \qquad z = 4s + 5$$

are skew.

<u>Planes:</u>

We need two things to completely describle a plane:

- a point $P_0(x_0, y_0, z_0)$ in the plane,
- the direction orthogonal to the plane, given by a vector $\vec{n} = \langle a, b, c \rangle$, called the **normal** vector.

We seek and equation which must be satisfied by any point P(x, y, z) on the plane.

Example 4. Find an equation of the plane through the point (-3, 4, 1) which has normal vector $\vec{n} = \langle 1, -1, 2 \rangle$.

Example 5. Find an equation of the plane which passes through the points P(2, 1, 4), Q(-1, 4, 6), and R(5, 2, 0).

Solution.

Example 6. Find the point where the line with parametric equations

x = -3 - t y = 1 - t z = 4 + 2t

intersects the plane 2x + 5y - 3z = 13.

Definition 3. Two planes are parallel if their normal vectors are parallel.

Example 7. The planes

and

2x + 8y - 6z = 10

-x + 4y + 3z = 2

are parallel, because their normal vectors, $\langle -1, 4, 3 \rangle$ and $\langle 2, 8, -6 \rangle$, are parallel.

Definition 4. If two planes are not parallel then they intersect in a straight line, and the **angle** between the planes is defined to be the acute angle θ between their normal vectors. If $\theta = \pi/2$ radians then the planes are **orthogonal**.

Example 8.

- (a) Find the angle between the planes 2x + 3y z = 1 and x 2y + z = 6.
- (b) Find symmetric equations for the line of intersection of the above planes.

Definition 5. The distance D from the point $P_1(x_1, y_1, z_1)$ to the plane \mathcal{P} with equation ax + by + cz + d = 0 is the length of the shortest line segment connecting P_1 to the plane. We can find an explicit formula for D:

Definition 6. The distance between two parallel planes is the distance from one plane to any point on the other plane.

Example 9. Find the distance between the planes -3x + 7y + z = 2 and 9x - 21y - 3z = 10. Solution.