12.6 – Cylinders and Quadric Surfaces University of Massachusetts Amherst Math 233 – Fall 2013

	•	c	. 1	1 .		, •
А	review	ot	the	basic	conic	sections

(1) Ellipse/Circle

(2) Parabola

(3) Hyperbola

Definition 1. A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The general equation of a quadric surface is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0.$$

However, up to translations and rotations, each surface is describable by an equation of the form

$$Ax^{2} + By^{2} + Cz^{2} + D = 0$$
 or $Ax^{2} + By^{2} + Cz = 0$.

Definition 2. A *cylinder* is a surface that consists of all lines (called *rulings*) that are parallel to a given plane curve.

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called *traces* (or cross-sections) of the surface.

Example 1. Sketch and identify the cylinders defined by

(a)
$$x^2 + y^2 = 1$$

(b)
$$x^2 + 4y^2 = 4$$

(c)
$$x^2 = z$$

More quadric surfaces: (images by Wolfram|Alpha)

(1) Ellipsoid/Sphere

(2) Elliptic paraboloid

(3) Hyperbolic paraboloid

(4) Hyperboloid of one sheet

(5) Hyperboloid of two sheets

(6) **Cone**

Example 2. Sketch and identify the surfaces given by

(a)
$$x^2 + 9y^2 + z^2 = 4$$

(c)
$$9y^2 + z^2 = x^2 + 4$$

(a)
$$x^2 + 9y^2 + z^2 = 4$$
 (b) $-3x^2 + 4y^2 = z^2$ (c) $9y^2 + z^2 = x^2 + 4$ (d) $2y^2 + z = x^2 + 1$ (e) $4y^2 - z^2 = x^2 + 1$ (f) $x^2 + 2z^2 - 6x - y + 10 = 0$

(b)
$$-3x^2 + 4y^2 = z^2$$

(d)
$$2y^2 + z = x^2 + 1$$