14.4 – Tangent planes and linear approximations University of Massachusetts Amherst Math 233 – Fall 2013

Definition 1. Let S be a surface with equation z = f(x, y) where f has continuous first partial derivatives and suppose $P(x_0, y_0, z_0)$ is a point on S. Let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y = y_0$ and $x = x_0$ with the surface S. Then the point P lies on both C_1 and C_2 . Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 at the point P. Then the *tangent plane* to the surface S at the point P is defined to be the plane that contains both tangent lines T_1 and T_2 .

Note. The tangent plane at P is the plane that most closely approximates the surface S near the point P.

Equation of a tangent plane.

Example 1. Find the tangent plane to the elliptic paraboloid $z = 3x^2 + 2y^2$ at the point (1, 1, 5). Solution.

Linear approximations. Since the tangent plane at a point is a good approximation to the surface near that point, a good approximation to the function f(x, y) (in Example 1) near the point (1, 1) is

$$L(x,y) = 6x + 4y + 5$$

The function L is called the *linearization of* f at (1,1) and the approximation

 $f(x,y) \approx 6x + 4y + 5$

is called the *linear approximation* or *tangent plane approximation of* f at (1, 1).

Definition 2. The *linearlization* of f(x, y) at (a, b) is

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

and the *linear approximation* of f at (a,b) is $f(x,y) \approx L(x,y)$.

Definition 3. Let z = f(x, y). Suppose x changes from a to $a + \Delta x$ and y changes from b to $b + \Delta y$. The corresponding *increment* of z is

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

and we say that f is differentiable at (a, b) if Δz can be written

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

where $\varepsilon_1 \to 0$ and $\varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

Theorem 1. If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Example 2. Show that $f(x,y) = xe^{xy}$ is differentiable at (1,0) and find its linearization there. Then use it to approximate f(1.1, -0.1).

Solution.

Differentials. Recall that if y = f(x), the differential dy is dy = f'(x) dx, and represents the change in height of the tangent line as x changes by an amount $dx = \Delta x$.

When considering a function of two variables f(x, y), we let dx and dy be independent variables (they are given values).

Definition 4. The differential dz, also known as the total differential, is defined by

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Note that the differential dz represents the change in height of the tangent plane, whereas Δz represents the change in height of the surface z = f(x, y).

Example 3. (a) If $z = f(x, y) = x^2 + 3xy - y^2$, find the differential dz.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.

Solution.

Example 4. The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in each. Use differentials to estimate the maximum error in the calculated volume of the cone.

Solution.