14.5 – The chain rule University of Massachusetts Amherst Math 233 – Fall 2013

Recall from Calculus I that if y = f(x) and x = g(t), where f and y are differentiable functions, then the chain rule says that

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

Now let z = f(x, y) be a function of x and y, which are in turn functions of t, say x = g(t) and y = h(t).

Theorem 1 (Chain rule). Suppose z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Proof. Use the definition of differentiability from Section 14.4:

Example 1. If $z = 2x^2y + 3x^2y^3$, where $x = \cos 2t$ and $y = \sin t$, find dz/dt when t = 0. Solution. **Example 2.** The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvin) of a mole of an ideal gas are related by the equation PV = 8.31T. Find the rate at which the pressure is changing when the temperature is 300 K and increasing at a rate of 0.1 K/s and the volume is 100 L and increasing at a rate of 0.2 L/s.

Solution.

Theorem 2 (Chain rule). Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s,t) and y = h(s,t) are differentiable functions of s and t. Then

$\frac{\partial z}{\partial z}$ _	$= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} +$	$\partial z \partial y$	and	$\frac{\partial z}{\partial z}$	$= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} +$	$\partial z \partial y$
$\overline{\partial s}$	$\overline{\partial x} \overline{\partial s}^{\top}$	$\overline{\partial y} \overline{\partial s}$	unu	$\overline{\partial t}$	$\overline{\partial x} \overline{\partial t}$	$\overline{\partial y} \overline{\partial t}$

Example 3. If $z = e^y \sin x$, where $x = st^2$ and $y = s^2 t$, find $\partial z / \partial s$ and $\partial z / \partial t$.

Solution.

Theorem 3 (Chain rule (general version)). Suppose that u is a differentiable function of the n variables x_1, x_2, \ldots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \ldots, m . Then u is a function of t_1, t_2, \ldots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Example 4. If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of

- (a) $\partial u/\partial s$ when r = 2, s = 1, and t = 0.
- (b) $\partial u/\partial t$ when r = 2, s = 1, and t = 0.

Solution.